• Title/Summary/Keyword: 전단시험

Search Result 1,847, Processing Time 0.025 seconds

Strength Character of the Condition of Consolidated Constant pressure with Improvement One-Dimension Shearing Test and Simple Shearing Test (정압(CD)조건의 개량형 일면전단시험과 단순전단시험에 있어서 강도특성에 관한 연구)

  • Kim, Jae-Young;Ohshima, Akihiko;Takada, Naotoshi;Kim, Dong-Hyun;So, Choong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.131-136
    • /
    • 2006
  • 일면전단시험은 전단면의 응력을 직접 측정하므로 평면변형시 강도를 파악할 수 있는 등의 많은 장점을 가지고 있으며, 시험조작이 간편하기 때문에 실용적으로도 우수한 것으로 판단된다. 그러나 사질토의 경우에 의한, Dilatancy에 의한 체적변화과정에서 공시체와 전단상자의 주면마찰력이 전단면의 수직 응력을 증감시키기 때문에 구해지는 강도가 과대 또는 과소하게 나타나는 것으로 알려져 있다. 그러나 반력판측에 장착한 하중계를 통해 전단면의 수직응력을 직접 측정 제어하는 형식으로 개선되어 주면마찰력의 영향을 해소하였다. 따라서 본 연구는 반력판측에 하중계를 장착한 개량형 다단식 단순전단시험기를 개발하여 사질토의 정압(CD)조건 전단시험을 수행하여 강도특성과 전단강도에 미치는 영향을 개량형 일면전단시험의 결과와 비교하였다. 그 결과 정압조건의 일면전단시험과 단순전단시험에 의한 강도정수는 조밀한 모래의 경우는 거의 비슷하게 나타나며, 느슨한 모래의 경우는 일면전단이 다소 크게 나타났다. 그리고 단순전단과 일면전단시험에서의 Dilatancy거동에는 큰 차이가 나타나지 않았다.

  • PDF

A Study on Improvement of Shear Test Apparatus in the Direct Shear Test Under Constant Pressure (정압(CD)조건 직접전단시험에 있어서 시험기의 개선에 관한 연구)

  • Kim Jae Young;Yang Tae Seon;Akihiko Ohshima
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • A direct shear test is classified roughly by one side simple shear test of confining horizontal displacement type and torsional shear test of non-confining one. Direct shear test that has been widely used so far has some problems with test apparatus, testing and the analysis, and in particular that its strength value is everestimated in sandy soils. Also, progressive failure of shearing process happens from shear apparatus restriction and because the shear strain and shear stress are erratic in specimen, we can not define the shear strain value. In the meantime, a simple shear test having advantage of direct shear test is an ideal test method that can get stress-strain relation on shear because it can deliver constant shearing deformation to specimen. However, simple shear test cannot be used practically, because its structure makes tester manufacturing difficult. This paper described a on outline of test apparatus, improvement of test method, and constant pressure test results based on the obtained from improved direct shear apparatus and the standardization of JGS soil testing method.

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Development of Direct Shear Apparatus with Different Loading Conditions for Rock Joints and Its Application Tests (하중조건별 시험이 가능한 암석 절리편 전단시험의 개발 및 적용시험)

  • 천병식;김대영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.161-172
    • /
    • 2000
  • 자연암석절리 및 인공 절리에 대하여 일정수직응력제어, 일정 수직하중제어 그리고 무한 강성제어가 가능한 암석 절리면 전단기 시험기를 개발하였다. 이 시험기는 전단변위에 의한 첩촉면적의 변화량을 계산하여 하중변화량을 조절하여 일정수직응력상태를 유지한다. 수직하중에 따른 시험기 강성에 의한 변화향이 제어 프로그램 내에서 제어되어 순수한 시편의 변위량을 출력하도록 하였다. 전단하중에 따른 시험기 강성에 의한 변위량은 상, 하부 전단상자의 상대변위 측정으로 최소화하였다. 전단거동 중의 자유도는 전당방향에 대하여 수평이도, 연직이동, 피칭, 롤링이 가능하도록 하였다. 자연절리면을 모사한 석고시편에 대하여 일정 수직응력 제어, 일정수직하중제어 그리고 무한 강성제어 조건으로 시험하여 제어상태 검증 및 비교를 하였다. 또한 경사각이 16.7˚와 22.6˚인 톱니형 시편에 대하여 시험한 결과 경사각 16.7˚와 22.6˚는 JRC로 10과 15를 나타내었으며, 첨두팽창각이 첨두전단강도에서 발생되며, Barton의 모델과 잘 일치함을 보였다.

  • PDF

개량형 일면직접전단시험기의 제작과 정체적.정압조건의 전단시험에 대하여

  • 김재영;류동훈;이재성;대도소언
    • Geotechnical Engineering
    • /
    • v.20 no.5
    • /
    • pp.58-65
    • /
    • 2004
  • 일반적으로 토압, 사면안정, 기초의 지지력 계산 등에 이용하는 강도정수를 결정하기 위한 시험법으로는 일축$.$삼축시험과 직접전단시험이 많이 이용되고 있다. 일축$.$삼축시험은 흙 공시체를 축방향으로 압축 또는 신장 파괴시켜서 압축강도를 구하는 것으로, 활동면의 응력을 Mohr-Coulomb의 파괴 기준으로부터 간접적으로 구하기 때문에 간접전단시험으로 불리고 있다. 특히. 삼축시험은 공시체의 주응력 상태가 명확하기 때문에 연구$.$실용면에서 폭넓게 이용되고 있다. (중략)

  • PDF

Regulation in Shear Test Method for BGA of Flip-chip Packages (플립칩 패키지 BGA의 전단강도 시험법 표준화)

  • Ahn, Jee-Hyuk;Kim, Kwang-Seok;Lee, Young-Chul;Kim, Yong-Il;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • We reported the methodology for the shear test which is one of the evaluation procedure for mechanical reliability of flip-chip package. The shear speed and the tip height are found to be two significant experimental parameters in the shear test. We investigated how these two parameters have an influence on the results, the shear strength and failure mode. In order to prove these experimental inconsistency, simulation using finite element analysis was also conducted to calculate the shear strength and to figure out the distribution of plastic energy inside of the solder ball. The shear strength decreased while the tip height increased or the shear speed decreased. A variation in shear strength due to inconsistent shear conditions made confusion on analyzing experimental results. As a result, it was strongly needed to standardize the shear test method.

Case Study on the Shear Characteristics of Limestone Joint Surfaces by Direct Shear Tests (직접전단시험에 의한 석회암 자연절리면의 전단특성 분석사례)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.292-304
    • /
    • 2019
  • Limestone joint surfaces with smooth roughness were experimented by means of both the individual direct shear tests based on the KSRM standard test method and the multi-stage direct shear test to apply the stepwise vertical stresses. Changes in the roughness of the joint surfaces before and after the shear tests were examined and the difference between the two kinds of tests mentioned above was analyzed. In both tests, the shear resistance increased as the joint roughness increased and the maximum shear stress required for shearing the joint surface increased as the vertical stress increased. The peak friction angle obtained by the multi-stage direct shear tests was only 63% of that obtained by the individual direct shear tests. In the multi-stage direct shear test, the initial engagement of the concave-convex parts changes frequently during stepwise shearing process, which deforms the original roughness of a joint surface. Accordingly, the individual direct shear test is thought to be more effective when obtaining the friction angle of the rock joint surfaces. Limestone joint surfaces with smooth roughness of JRC value 4~8 were found to have peak friction angle of $47^{\circ}$, residual friction angle of $38^{\circ}$ and cohesion of 37 kPa.

Characteristics of Undrained Shear Strength and Development of Modified SPT on Very Soft Ground in Korea (국내 초연약지반의 비배수전단강도 특성 및 개량표준관입시험기 개발)

  • Jung, Hyuksang;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.105-115
    • /
    • 2009
  • In this study, SPT, FV, and CPT tests were performed at five very soft grounds in southern coast of Korea to characterize the $S_u$ of very soft ground. In addition, a new modified SPT that is applicable to very soft ground was developed. Tests results showed that in very soft ground (N<2), the $S_u$ was lower than 12.5 kPa using the empirical N-Su correlation, and lower than 50 kPa and 65 kPa using vane shear test and CPT, respectively. It was shown that the results of in-situ tests were higher than those estimated from the N-Su correlation, and it was also demonstrated that the range of estimated $S_u$ was quite wide. New correlations that relate the modified SPT $N_m$ with Su from FV and CPT were developed, which are $S_u=1.76N_m-10.47$ and $S_u=1.82N_m-9.71$, respectively.

  • PDF

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.