• 제목/요약/키워드: 전단속도비

검색결과 300건 처리시간 0.031초

Analysis of Trasverse Structure's Effect in a Channel Flow (횡단 구조물로 인한 하도 내 흐름특성 변화 연구)

  • Shim, Jae-Ho;Kim, Min-Cheol;Xin, Zhang;Kim, Hyun-Jung;Son, Kwag-Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1961-1964
    • /
    • 2010
  • 국내 하천개발은 시대의 요구에 따라 이 치수 목적에서 친수성을 중시한 생태하천으로 꾸준히 진화해 왔으며, 시대적 목적에 의한 다양한 수공구조물이 하천에 설치되고 있다. 특히 최근에는 수제와 여울, 소와 같은 생태하천 복원 및 자연재해 저감을 위한 다목적 수공구조물에 대한 관심이 증대되고 있다. 그러나 이들의 연속구조물 설치에 따른 수리학적 특성 변화에 대한 연구는 미흡한 실정이다. 본 연구에서는 하도 횡단구조물의 연속 설치특성(월류비와 간격비)에 따른 흐름지배인자의 변화특성을 분석하였다. 연속 횡단구조물의 월류비와 간격비에 따른 조도계수의 변화를 계측 분석하였다. 실험 분석 결과 세굴에 영향을 주는 전단속도는 간격비(w/k)와 월류비(H/k) 및 Re수의 함수가 되는 흐름특성을 확인할 수 있었다. 또한 간격비(w/k)와 월류비(H/k), Re수와 U/U*의 관계를 제시함으로써 하도횡단 연속구조물 설계를 위한 기초 자료를 제공하고자 하였다.

  • PDF

Void Ratio Evaluation of Unsaturated Soils by Compressional and Shear Waves (압축파와 전단파를 이용한 불포화토의 간극비 산정)

  • Byun, Yong-Hoon;Cho, Se-Hyun;Yoon, Hyung-Koo;Choo, Yun-Wook;Kim, Dong-Su;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • 제28권12호
    • /
    • pp.41-51
    • /
    • 2012
  • Soils are commonly unsaturated in the near surface. The stiffness of soils is affected by the amount of air and water. The objective of this study is to evaluate the porosity of the unsaturated soils by using the elastic waves including compressional and shear waves. The elastic waves are measured at different degrees of saturation by controlling the matric suction. Thus, the unsaturated soils are characterized at different levels of the matric suction. Shear and compressional waves are measured by using the bender elements and the piezo disk elements, respectively. Both transducers are installed on the walls of the rectangular cell. The unsaturated soils are prepared by using uniform size sands and silts. Test results show that both compressional and shear wave velocities change according to the matric suction. The elastic modulus, the shear modulus, and the Poisson's ratio are estimated based on the measured elastic wave velocities. In addition, the void ratio of the unsaturated soils estimated using elastic wave velocities matches well with the volume based void ratio. This study demonstrates that the elastic waves can be effectively used for the characterization of unsaturated soils.

Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests (공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구)

  • Park, Jong-Bae;Sim, Young-Jong;Jung, Jong-Suk;Park, Yong-Boo
    • Land and Housing Review
    • /
    • 제2권4호
    • /
    • pp.387-395
    • /
    • 2011
  • According to the seismic design criteria for structural buildings in Korea, the ground is classified into 5 types based on the average shear wave velocity measured from elastic wave tests on site and seismic load applied to the structure is estimated. However, elastic wave tests in site, however, on the engineering fill, cannot be performed during the construction period. Therefore, to evaluate shear wave velocity considering field conditions, resonant column (RC) and torsional shear (TS) tests are performed and compared with various elastic wave test results. As a result, if confining pressure for the tests using engineering fill are considered properly, we can obtain similar results comparing with those of elastic wave tests. In addition, by considering the effect of maximum shear modulus and confining pressure by RC/TS tests, n values shows typical values ranging from 0.434 to 0.561 so that utilization of RC/TS tests can be useful to infer shear modulus in field.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • 제29권5호
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

Case Study on Estimation of Shear Wave Velocity in Core Zone of Rockfill Dam Using MASW (MASW를 이용한 사력댐 코어죤 전단파속도 산정 사례 연구)

  • Lee, Jongwook;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • 제9권7호
    • /
    • pp.53-60
    • /
    • 2008
  • The purpose of this study is to make case studies on estimation of shear wave velocity in core zone of some rockfill dams by MASW (Multi-channel Analysis of Surface Waves) and to compare the results of case studies with those of the empirical method. Furthermore, the purpose is to recommend the range of shear wave velocity in core zone by MASW and to supply the preliminary data for estimation of shear wave velocity in core zone which is needed for dynamic analysis. From the results of case studies and the comparison between the results of case studies and those of empirical equation, it was found that the shear wave velocities obtained by MASW were smaller than those by the empirical recommendation (Sawada & Takahashi) in the depth of more than 10 m. Also, it is recommended that using the lower bound of empirical formulation by Sawada and Takahashi be available and resonable in case that MASW is not available due to the field condition and the investigation is preliminary.

  • PDF

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • 제24권5호
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

Fheological Properties of PET Containing Thermotropic Polyester (열방성 액정 폴리에스터를 함유한 PET의 유변학적 특성 연구)

  • 김윤수
    • The Korean Journal of Rheology
    • /
    • 제3권1호
    • /
    • pp.68-75
    • /
    • 1991
  • 상업적으로 많이 이용되는 폴리에틸렌테레프탈레이트(PET)에 액정중합체(LCP)인 열방성 폴리에스터를 첨가하여 유변학적 특성을 조사하고 전단속도와 혼합비에 따른 LCP domain의 형태 변화를 고찰하였다. 모체고분자 내 구형과 타원형을 이루는 LCP domain들 은 신장력에 의해 피브릴 구조의 변형되고 이 피브릴은 흐름방향으로 배향되어 용융체에 윤 활제와 같은 역할을 함으로써 용융점도의 감소를 보이는데 특히 높은 전단속도 영역에서 LCP가 30wt%까지 첨가될수록 큰 폭으로 감소하였다. 주사식 현미경(SEM)의 관찰로부터 LCP domain의 피브릴구조를 확인할 수 있었고 또한 LCP domain의 형태 변화가 용융점도 가 감소에 직접 관계됨을 확인할 수 있었다.

  • PDF

Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves (전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • 제24권8호
    • /
    • pp.25-34
    • /
    • 2008
  • A new hybrid oedometer cell is designed and manufactured to investigate a behavior of soft soils by using elastic and electromagnetic waves during consolidation test. Bender elements, which generate and detect shear waves, are placed in the top cap and the bottom plate and mounted on the oedometer wall. Double wedge type electrical resistance probe, which measures local void ratio change, is positioned onto the top cap of the oedometer cell. The bender elements and the electrical resistance probe are anchored into a nylon set screw with epoxy resin. The nylon set screw with epoxy resin minimizes directly transmited elastic waves through the oedometer cell due to impedence mismatch and allows for easy replacement of defected bender elements and electrical resistance probe. Primary consolidation time can be estimated from the slope of electrical resistance versus log time curve and the evolution of shear wave velocity. The shear wave velocity can be used to assess inherent anisotropy when disturbance effects are minimized because particle alignment affects the shear wave velocity. The void ratios evaluated by the electrical resistance probe are similar to those by the settlement during consolidation. This study suggests that the shear wave velocity and the electrical resistance can provide complementary imformations to understand consolidation characteristics such as primary consolidation, anisotropy, and void ratio.

Analysis of Improved Shear Stiffness and Strength for Sandy Soils Treated by EICP (EICP 방법으로 처리된 사질토의 전단 강성도 및 강도 증가 분석)

  • Song, Jun Young;Ha, Seong Jun;Jang, Jae Won;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • 제36권1호
    • /
    • pp.17-28
    • /
    • 2020
  • This study presents the experimental results of ground improvement efficiency induced by enzyme-induced carbonate precipitation (EICP) in soils. First, the optimal mixture ratio of EICP solution was determined by comparing the amount of induced carbonate depending on the different ratio among urea, CaCl2, and urease. Next, we evaluated the shear stiffness and strength of EICP-treated sandy soil by performing shear wave velocity measurement and triaxial shear test. Furthermore, induced carbonate in treated soil was visually investigated by X-ray CT and SEM analysis. The results showed that the maximum shear stiffness evolved 19~30 times after 6 hours of reaction time compared with non-treated sands. Also, the cohesion and the friction angle tended to increase and decrease, respectively, as the amount of induced carbonate increased.

Stiffness Characterization of Biopolymer-treated Sandy Soils using Shear Wave Velocity (전단파속도를 이용한 바이오폴리머 처리 사질토의 강성특성 평가)

  • Cho, Hyunmuk;Jun, Minu;Lee, Eun Sang;Hong, Won-Teak
    • Journal of the Korean Geotechnical Society
    • /
    • 제40권3호
    • /
    • pp.55-63
    • /
    • 2024
  • Xanthan gum biopolymer is an ecofriendly ground stabilizer that maintains stability in a wide range of temperatures and pH values. The binding effect of sandy soil particles realized by injecting xanthan gum biopolymer is dependent on the xanthan gum matrix, which is formed during the drying process; thus a study on the effects of the drying process of the xanthan gum solution on the changes in stiffness characteristics of sandy soil is required. In this study, shear wave velocity and electrical resistivity were monitored in sandy soil specimens saturated with biopolymer solutions of different gravimetric concentrations to investigate the improvement effects of biopolymer-treated sandy soils with the drying process. The experimental results reveal that both shear wave velocity and electrical resistivity increase during drying process. The results demonstrate the stiffness improvement effects of biopolymer-treated sandy soils. In addition, a higher stiffness improvement effect was monitored in the biopolymer-treated sandy soils with a higher gravimetric concentration. The results of this study may be used to estimate the stiffness improvement effects of sandy soils treated with biopolymer solutions with the drying process.