• Title/Summary/Keyword: 전단성형

Search Result 207, Processing Time 0.023 seconds

An Experimental Study on the Behavior of T-type Modular Composite profiled Beams (T형 모듈단면 합성 프로파일보의 거동에 관한 실험적 연구)

  • Ahn, Hyung Joon;Lee, Seong Won;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.539-548
    • /
    • 2008
  • This study aims to determine the applicability of the previously published T-type modular profile beam in the manner of producing specimens designed specially for the said purpose, determining their bending and shear behaviors depending on the presence of shear reinforcement, and analyzing the results in comparison with the theoretical equation of plastic deformation. The modular profile beam contributes to bending and shear resistance with the addition of the profile to the form function, and enhances the molding performance through the modular concept. The experimental results showed that the TS series specimens with shear reinforcement have bending behaviors superior to those of the T series specimens without shear reinforcement, which suggests that the used shear reinforcement appropriately bears the shear force. However, it was considered that all the specimens except for the T1-1 specimen failed to have adequate bending performance because of the intermodular slipping caused by the shear failure of the bolts. It is expected that further studies on the T-type modular profile beam, in which shear connectors will be considered as a variable,be performed to develop optimal intermodular connection methods.

3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity (인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • The compression molding is widely used in the automotive industry to produce products that are large, thin, lightweight and stiff. The molded product is formed by squeezing a fiber-reinforced plastic composites. During a molding process of fiber reinforced thermoplastic composites, control of filling patterns in mold, orientation and distribution of fibers are needed to predict the effects of molding parameters on the flow characteristics. It is the objective of this paper to develop an isothermal compression molding simulation that can handle both thin and thick charges and motion of the flow front, and can predict pressure distributions and accurate velocity gradients. The composites are treated as an incompressible Newtonian fluid. The effects of slip parameter $\alpha$ and extensional/shear viscosity ratio $\zeta$ on the mold filling parameters are also discussed.

  • PDF

A Study on the Forming Conditions of a Forging Piston by using the Finite Element Simulation and the Taguchi Method (유한요소해석과 다구찌방법을 이용한 단조피스톤의 성형조건 연구)

  • You, Ho-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1990-1995
    • /
    • 2012
  • This paper presents design methodology to determine the design parameters that affect the manufacture of aluminum forging piston using the FE simulation and the Taguchi method. Maximum forging load is used as the objective function, and preform, material temperature and draft angle are selected as the design parameters. Their combinations are implemented by orthogonal array, and forging load is evaluated through the simulation. From the analytic results of design parameters to minimize the load using signal to noise ratio, their optimal combinations are proposed. The proposed design methodology will be able to help in selecting proper preform among preforms and to be used in determining the optimal combination of the parameters in metal forming process.

Performance of Predistorters for OEDM Systems with a Raised Cosine Transmit Filter and a High Power Amplifier (Raised Cosine 송신 필터와 고출력 증폭기를 사용하는 OFDM 시스템을 위한 사전왜곡기의 성능)

  • 남충진;신요안
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.601-604
    • /
    • 2001
  • 본 논문에서는 고출력 증폭기와 송신 펄스 성형 필터로서 Raised Cosine filter (RCF)를 사용하는 OFDM 시스템에서 비선형 왜곡 보상을 위한 고정점 반복 사전왜곡기를 제안하고 이의 성능을 검증하였다. 제안된 사전왜곡기는 RCF 전단에 위치하나 이의 Zero-Intersymbol Interference 성질을 이용하여 단지 고출력 증폭기에 의한 기억성이 없는 비선형 왜곡만을 보상하는 효율적인 구조이다. 또한 성능 검증을 위해 필터 전단에 위치하는 사전왜곡기와 증폭기 전단에 위치하여 증폭기의 비선형 왜곡만을 보상하는 사전왜곡기를 비교하여, 필터에서 ISI를 제거한 경우에는 사전왜곡기의 위치에 관계없이 비선형 왜곡을 효과적으로 보상할 수 있다는 점을 모의실험을 통해 확인하였다.

  • PDF

Behavior of Steel-Concrete Composite Decks for PSC Girder Bridge with Various Shear Span Lengths (전단 지간의 변화에 따른 PSC 거더용 강-콘크리트 합성 바닥판의 역학적 거동)

  • Kim, Tae-Hyup;Park, Jun-Myung;Hong, Sung-Nam;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • Recently, steel-concrete composite structures are widely used in bridge and building constructions. In this paper, a new type of steel-concrete composite deck with profiled steel sheeting is proposed to replace the conventional cast-in-place reinforced concrete deck. Perfobond rib shear connectors were utilized to provide horizontal shear resistance between the profiled sheeting and the concrete. To validate the effectiveness of the proposed deck system, 8 full-scale deck specimens for PSC girder bridge were fabricated. The specimens were tested with four different shear span lengths to determine the horizontal shear resistance of the deck under a static monotonic loading. For comparison purpose, two reinforced concrete decks were also fabricated and tested. The horizontal shear resistance of the proposed deck system was calculated using the m-k method.

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

특집: 미래주도형 성형공정과 수치 해석기술 - 비정질 합금 온간 성형 공정에서의 미세 조직 연계 해석 기술

  • Lee, Gwang-Seok;Jeon, Hyeon-Jun
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.16-29
    • /
    • 2011
  • 결정 합금 대비 비정질 합금은 높은 경도를 갖기 때문에 마모 저항성도 좋고 내부 식성 등 환경에 대한 저항성도 월등하며, 또한 과냉된 액상 상태까지 재가열하게 되면 낮은 점성도를 갖게 되므로 복잡한 3차원적인 형상을 가지는 부품을 환경에 대한 저항성, 피로 저항성, 강도 및 경도 등을 모두 고려하여 높은 정밀도를 가지고 제조하는 것이 가능하므로 우수한 물성을 갖는 구조 및 기능성 재료로의 다양한 응용이 타진되고 있다. 이러한 비정질 합금의 변형 거동에 대한 연구는 대부분 유리 천이 온도 이하에서의 전단 및 파단에 이르는 이른바 불균일 변형(Inhomogeneous Deformation) 거동에 대한 이해를 위한 실험 및 해석적 연구에 집중되어 왔다. 반면 상업화의 기반이 되는 고상 기반 2차 정형 성형은 과냉 액상 영역에서의 구조 완화 및 결정화롤 대표되는 미세 구조 제어 균일 변형(Homogeneous Deformation)에 대한 이해 없이는 불가능하므로, 이러한 관점에서 비정질 합금 특유의 점성 유동 특성을 이용한 균일 변형 응용 예시 및 미세구조 변화 연계 해석 기술의 현황을 소개하고자 한다.

  • PDF

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.