• Title/Summary/Keyword: 전단부 길이

Search Result 129, Processing Time 0.027 seconds

Reinforcement Method of Tower Basement on Power Transmission Line (철탑 콘크리트 기초강도 보강방안 분석)

  • Lee, Kyoung-Wook;Park, Jin-Tai;Kim, Jae-Joon;Hwang, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2115_2116
    • /
    • 2009
  • 철탑기초의 콘크리트 압축강도가 Core시험결과 설계기준강도에 미달된 철탑기초에 대한 보강방안은 콘크리트의 강도가 부족함으로써 발생되는 콘크리트 기초 본체에 대한 문제로서 콘크리트의 허용 펀칭전단응력의 감소로 발생되는 기초 상판부의 두께 부족 문제와 앵카재의 소요길이 부족 등으로 압축시킬 수 있다. 이에 대한 대책으로써 펀칭전단에 의한 기초 상판부 두께가 부족한 문제와 앵커재 길이 부족 문제에 대한 기초강도 보강방안을 분석하고자 한다.

  • PDF

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

The Effect of Anchorage of Reinforcement in Slab-Column Connection (슬래브-기둥 접합부에서 전단보강체에 정창성능에 따른 영향)

  • Choi, Huyn-Ki;Kim, Jun-Seo;Lee, Moon-Sung;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.185-188
    • /
    • 2008
  • Flat plate system has structural weakness such as punching shear. Punching shear resistance can be increase by using a lager column section and effective depth, higer concrete compressive strength, and more flexural reinforcement ratio. But using a shear reinforcement is most economical, enable, workable solution in flat plate. The slab with thickness smaller than 250mm can not perform effectively due to insufficient development length of shear reinforcement in the slab. In case of proposed reinforcements, since the shear reinforcements were installed between the top bar and the bottom bar, shear elements generated slip failure before they reached yield. strength. effect of anchorage strength were effective anchorage length, concrete strength, diameter of shear element and anchorage detail. considering effect of slab thickness and concrete strength, formula of K factor propose in thin flat plate slab. by considering effect of anchorage length and concrete strength, strength of shear reinforcement will be computed correctly in thin flat plate slab.

  • PDF

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

An Experimental Study on Block Shear Fracture of Base Metal in Ferritic Stainless Steel Welded Connection (페라이트계 스테인리스강 용접접합부의 모재 블록전단파단에 관한 실험적 연구)

  • Kim, Tae Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.303-312
    • /
    • 2016
  • Many researches on the application of stainless steels as structural steels have been performed thanks to their material properties such as superior ductility and corrosion resistance. Ferritic stainless steels(STS430) with little or no nickel have been used increasingly in building structure because it is inexpensive compared to austenitic stainless steels(STS304) with nickel, but provide performances similar to the austenitic stainless steel. This paper deals with block shear fracture behavior of base metal in stainless steel welded connection. Although the block shear fracture behavior for welded connection due to stress triaxiality is different from that of bolted connection, the block shear strength of welded connection in current design specifications has been predicted based on that of bolted connection. The main parameters are weld length and welding process(Arc and TIG welds). The ultimate strengths of TIG welded specimens were higher than those of arc welded specimens and current design predictions by AISC, EC3 etc. were compared with test strengths.

An Experimental Study on Steel Plate Coupling Beam (철골 플레이트 커플링 보의 실험적 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presented an structural efficiency of steel coupling beam jointed single plate shear connections with seat and top angle. Parameters for the test specimens were are seat and top angle, reinforcing of concrete, embedded length, section loss. Steel coupling beam with angle showed excellent strength, stiffness, energy dissipation capacity. The specimen with no reinforcement around the embedded steel plate showed slightly low deformation capacity because of early failure in the precast concrete walls. However, the specimen with reinforcement around the embedded steel plate showed good deformation capacity. Deformation capacity was not decrease despite short embedded length. The specimen with section loss showed excellent deformation capacity. Because shear strength of steel coupling beam was lesser than of connections. These results showed that for workability and cost efficiency, the proposed system is promising for one of steel coupling beam.

  • PDF

A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research (동맥 전단부의 역학적분석을 위한 새로운 실험적 방법)

  • 황민철;신정욱
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 1995
  • This paper suggests a new experimental system and protocol of mechanical analysis for arterial cross-section research. So far, most methods of arterial studies have been focused on the deformation measurement in longitudinal and circumferential direction. The deformation in radial direction has been theoretically assumed by Poisson's ratio and/or the incompressibility of arterial wall. Also, the radial gradient of strains are neglected. In fact, the radial deformation and radial gradient of strains against blood pressure are important to be observed in the pathological point of view of artery. Proposed experimental system and protocol are to measure the deformation of cross-sectional artery. Also, this method enables to measure the deformation of anterior, posterior, and side site of cross-sectional area. It is meaningful to correlate the mechanically experimented data with pathological data of athroscIerotic artery.

  • PDF

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Plastic Hinge Length of Reinforced Concrete Columns with Low Height-to-Width Ratio (전단경간비가 작은 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Woo, Jae-Hyun;Kim, Byung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.675-684
    • /
    • 2010
  • The reinforced concrete members are designed to fail in flexural to lead ductile fracture. In the building structures, the failure is typically imposed on beams to prevent damages in columns. However, progression of plastic collapse mechanism may ultimately develop, a plastic hinge at the bottem end of the first floor column, which then can be subjected to shear or bond finally due to large axial force and small shear span-to-depth ratio. In this study, 10 RC column specimens failed in shear after flexural yielding was investigated to determine the factors affecting the plastic hinge length. The findings of this study showed that the most effective factor affecting the plastic hinge length was an axial force. As an axial force increase, an axial strain and a ductility ratio were decreased obviously. The test also shows the observed plastic hinge length was about 0.8~1.2d and the this result has difference compared with forward research.