• Title/Summary/Keyword: 전단벽체

Search Result 204, Processing Time 0.019 seconds

Effect of Step-Wise Excavation Depth on the Earth Pressure against an Excavation Wall in Rock Mass (암반지층 굴착벽체 발생토압에 대한 단계별 굴착깊이의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • This paper examined the effect of step-wise excavation depth on the earth pressure against an excavation wall in rock mass. Numerical parametric studies were conducted based on the Discrete Element Method (DEM) to carry out the problems in rock mass. Controlled parameters included step-wise excavation depth, rock types, and joint conditions (joint shear strength and joint inclination angle). The magnitude and distribution characteristics of the induced earth pressure in a jointed rock mass were investigated and compared with Peck's earth pressure for soil ground. The results showed that the earth pressure against an excavation wall in rock mass were highly affected by different rock and joint conditions, and the effect of step-wise excavation depth increased as a rock type is deteriorated more. In addition, it was found that the earth pressure against an excavation wall in rock mass might be considerably different from Peck's empirical earth pressure for soil ground.

Structural Behavior of Joints between the Hysteretic Steel Damper Connector and RC Wall Depending on Connection Details (강재판형 이력댐퍼 연결부재와 RC벽체의 접합상세에 따른 구조거동)

  • Kang, In-Seok;Hur, Moo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.737-744
    • /
    • 2012
  • Hysteretic steel damper has been applied mainly to steel buildings. However, the usage in RC buildings is rapidly increasing recently. In order to apply the steel hysteretic damper in RC buildings, supporting elements of the damper should have sufficient strength and stiffness suitable for transferring damper forces to beams and walls. But due to the inevitable damage in reinforced concrete elements due to cracking, identification of the load transfer mechanism from damper to supporting element and hysteretic characteristics of the supporting element are extremely important in evaluating the damper behavior. Experiments were carried out on connection details between RC walls and supporting elements of the steel plate typed damper such as EaSy damper. The test results showed that fracture patterns of all specimens were almost identical except in the crack number and pattern associated with shear loading condition. Among the specimens, HD-3 shoed a well distributed cracks patterns along with good performance with respect to energy dissipation capacity, stiffness deterioration, and strength degradation.

Development of Wide Connection Method for Vertical Joints of Precast Concrete Walls (프리캐스트 콘크리트 벽체 수직접합부의 광폭형 연결방식 개발)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • This research analyzed the structural efficiency and application by improving the 100 mm width vertical joint to 150 mm and developing three connection methods to reduce the difficulty in assembling and handling PC walls. Moreover, nonlinear finite analysis was used for analyzing. From the analysis results, when double width connection was applied, the PC wall showed larger load capacity and ductility due to the steel bar sharing loads efficiently. Moreover, as the dimension of loops and the number of bars increased, the maximum load capacity increased as well. Also, among the double width connections, the largest capacity showed in the order of welding, ring and C type loop. However, in case of welding type loop connection, the ring type loop is more stable due to changes in different site conditions. Therefore, thorough quality control of welding is necessary.

The Effects of Coupling Beam on Lateral Drift of High-rise Buildings (고층건물의 횡변위에 대한 커플링보의 효과)

  • Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5931-5937
    • /
    • 2011
  • The effects of coupling beam, which is generally used in high-rise building structure system as shear wall-coupling beam, on the lateral drift of high-rise buildings are studied in this paper. Six different analytical models, which are combination of two inputs, such as concrete strength and wall thickness, are selected and analyzed on lateral drifts with different stiffness of coupling beams. MIDAS GEN was used for analysis. Calculated lateral drifts were compared with allowable limits(H/400~H/500) proposed by standard CEN EC 3/1, in order to analyze the control evaluation of coupling beams. Calculated x-direction displacements were 68~87 percent of allowable limit(H/500). With increase of wall thickness(100mm) and concrete strength(5Mpa), eight to ten percent and four percent of x and y-direction displacement were decreased individually. About three percent of lateral displacement was increased with 20 percent decrease of coupling beam stiffness and additional 20 percent decrease resulted in additional five to eight percent increase.

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.

Characteristics of the Earth Pressure Magnitude and Distribution in Jointed Rockmass (절리가 형성된 암반지층에서 발생된 토압의 크기 및 분포특성)

  • Son, Moorak;Yoon, Cheolwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.203-212
    • /
    • 2011
  • This paper investigates the caharactheristics of the earth pressure magnigue and distribution in jointed rockmass for a safe and economic design and construction of earth retaining structures installed in rock stratum. For this purpose, this study will first investigate the limitations and problems of the existing earth pressure studies and then to overcome them th study will conduct the discontinuum numerical parametric studies based on the Discrete Element Method (DEM), which can consider the joint characteristics in rock stratum. The controlled parameters include rock type and joint conditions (joint shear strength and joint angle), and the magnitude and distribution characteristics of earth pressure have been investigated considering the interactions between the ground and the retaining structures. In addition, the comparison between the earth pressures induced in rock stratum and Peck's earth pressure for soil ground has been carried out. From the comparison, it is found that the earth pressure magnitude and distribution in jointed rockmass has been highly affected by rock type and joint condition and has shown different characteristics compared with the Peck's empirical earth pressure. This result would hereafter be utilized as an important information and a useful data for the assessment of earth pressure for designing a retaining structures installed in jointed rockmass.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

A Study on Stability Evaluation of the Nail-Anchor Mixed Support System

  • Kim, Hong-Taek;Cho, Yong-Kwon;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.41-70
    • /
    • 1999
  • The benefits of utilizing internal reinforced members, such as soil nails and ground anchors, in maintaining stable excavations and slopes have been known among geotechnical engineers to be very effective. Occasionally, however, both soil nails and ground anchors are simultaneously used in one excavation site. In the present study, a method of limit equilibrium stability analysis of the excavation zone reinforced with the vertically or horizontally mixed nail-anchor system is proposed to evaluate the global safety factor with respect to a sliding failure. The postulated failure wedges are determined based on the results of the $FLAC^{2D}\; 및\; FLAC^{3D}$ program analyses. This study also deals with a determination of the required thickness of the shotcrete facing. An excessive facing thickness may be required due to both the stress concentration and the relative displacement at the interface zone between the soil nailing system and the ground anchor system. A simple finite element method of analysis is presented to estimate the corresponding relative displacement at the interface zone between two different support systems. As an efficient resolution to reduce the facing thickness, the modified bearing plate system is also proposed. Finally with various analysis related to the effects of design parameters, the predicted displacements are compared with the results of the $FLAC^{2D}$ program analyses.

  • PDF

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.