• Title/Summary/Keyword: 전단링

Search Result 184, Processing Time 0.025 seconds

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.

Investigations of Application of Anchor Type Nail Using Experiments and Numerical Analysis (모형실험 및 수치해석을 이용한 앵커형 네일의 적용성 검토)

  • Kim, Donggun;Jeong, Gilsu;Jo, Kwangjun;Yoo, Namjae;Um, Jaekyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.19-26
    • /
    • 2012
  • In the present study, anchor type nail with PC-strand which can add up the pre-stress at the nailing to increase the resistance and shear stress in the whole ground has been investigated. Load-displacement and wall displacement have been analyzed by experimental model and numerical analysis of anchor type nail, nailing, and non-nailing to examine the behavior of anchor type nail. From the experimental results, it was found that horizontal displacement is considerably decreased according to increasing the load in case of anchor type nail added pre-tension. Especially, it was observed that resistance of displacement at the upper wall is increased. The results of numerical analysis show the same results of experimental results.

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures (국산 고정밀 가속도계의 건설 구조물 적용성 평가)

  • Kwon, Nam-Yeol;Kang, Doo-Young;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

Fixation Method of Prestressed Fiber Optic Sensor (광섬유센서의 프리스트레인 부가 고정방식)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.211-216
    • /
    • 2012
  • FBG sensor peaks could be split due to polarization by shear strain, when the fiber optic sensors embedded or attached to the structure. For the fiber optic sensor packages, sensor grating has to be protected from shear strains. Also, pretension has to be applied to the sensor because compressive strain must be measured. Without pretension of sensor, the sensor does not show any change of signal until it is stretched. In order to mesure compressive and tensile strains, two fixing point and prestressed sensor need. In the fixing point, just holding the optical fiber cause slip between core and cladding in the fiber. A Fixation method of prestressed FBG sensors fixed with partially stripped fibers was developed. The sensor package has the prestress controllable fixtures at the fixing points. Prestress to the sensor imposed by controlling the two fixed points with bolts and nuts make it easy to measure compressive strain as well as tensile strain. The fiber optic sensor packages applied to the actual structure and the structural monitoring system using the package can be applied to safety through surveillance.

Coupled Effect of Soil Nail/Slope Systems (쏘일네일-사면의 상호작용 효과)

  • Jeong Sang Seom;Lee Jin Hyung;Lee Sun Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2005
  • In this paper, a numerical comparison of predictions by limit equilibrium analysis and finite difference analysis is presented for slope/soil-nail system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC 2D. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a soil nail slope according to shear strength reduction method. The case of coupled analyses was performed for soil nails in slope in which the soil nails response and slope stability are considered simultaneously. In this study, by using these methods, the failure surfaces and factors of safety were compared and analyzed in several cases, such as toe, middle and top of the slope, respectively. Furthermore, the coupled method based on shear strength reduction method was verified by the comparison with other analysis results.

Study on Friction Characteristic of Sintered Friction Component for Synchronizer-Ring of Diesel Vehicle (디젤차량 싱크로나이저링을 위한 소결마찰재 개발 및 접합특성 평가)

  • Song, Joon Hyuk;Kim, Eun Sung;Kim, Kyung-Jae;Oh, Je-Ha;Yang, Sung Mo;Kang, Shin Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2013
  • The speed change performance of transmissions has become a serious issue because of the increase in the inertia moment that has accompanied increases in engine output and transmission size. Therefore, it is necessary to develop better wear resistant friction materials. In this study, an appropriate sintered friction component for the synchronizer ring of a diesel manual transmission was developed, and its bonding characteristics were analyzed. That is, a process for bonding an Fe-based base material and Cu-based sintered friction material was developed. BSE and EDX analyses of this bonding layer were conducted, along with a shear strength test, to determine the bonding characteristics.

한지 도침처리에 따른 광택도 및 강도적 성질 변화

  • Choi, Chan-Ho;Seo, Yeong-Beom;Jeon, Yang;Lee, Ho-Won
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.201-205
    • /
    • 2001
  • 본 연구에서는 한지가공공정의 하나인 도침공정을 현대의 칼렌다링 공정과 비교 분석을 실시한다. 도침은 커다란 나무뭉치를 사용하여 반복적으로 여러 장이 겹쳐 진 한지를 두두림으로서 한지 표면을 평활하게 하며, 광택도를 높이는 효과를 볼 수 있다. 나무뭉치는 밑면이 평활해야만 할 것이다. 보통 한지 제조업자들은 경험 을 토대로 얼마만큼의 도침이 필요한지 결정하고 실시하곤 한다. 이러한 도침공정 에서 현대의 칼렌다링이 할 수 없는 중요한 공정이 존재한다면, 현대의 초지기에도 이러한 원리를 적용함으로써 효과적인 종이의 품질개선을 이룰 수 있는 여지가 충 분히 있다고 판단된다. 한지에 있어서 도침의 역할이 무었인지, 도침은 칼렌다링으 로 대치할 수 있는 지 둥을 비교 검토하였다. 도침공정 연구를 위하여 라이너지 한 종류, 백상지 한종류, 최근에 제조된 전통 한지 세 종류를 사용하였다. 라이너지와 백상지는 일반 제지공장에서 제조되는 방 식을 그대로 사용하여 기계 칼렌다를 통과한 샘플을 얻었으며 칼렌다를 통과하지 않은 라이너지와 백상지를 특별히 같은 지종에서 얻어서 실험을 실시하였다. 기계 칼렌다링을 하지않은 라이너지와 백상지 세 종류의 전통한지는 실험실 칼렌다를 통과시켰고, 또 각각에 도침을 실시하였다. 샘플들의 기본 물성과 처리조건을 표 1 에 정리하였다. 도침 공정에서 사용한 나무 뭉치의 무게는 약 64Kg 이며, 최대 높이 41cm 로 들어올려져 자유낙하에 의한 충격을 종이에 가하였고, 분당 충격횟수는 63회 였다. 라이너지는 도침 및 칼렌다에 의해 밀도가 서서히 증대되는 것을 볼 수 있었다 (그림 1). 도침은 칼렌다에 비해 밀도 증대에 효과적이지는 못하였다. 반면 백상 지에서는 도침이 기계 칼렌다나 실험실 칼렌다보다 현저히 크게 밀도를 증대시킴을 볼 수 있었다 (그림 2). 칼렌다는 종이를 높은 전단력과 압축력으로 변형시키는데 비해 도침은 단순히 압축 압력만을 종이에 가하는 것이 다르다고 볼 수 있는데, 라 이너지와 백상지가 같은 조건하에서 왜 이러한 큰 차이를 보이는 이유를 아직 알수 없다.

  • PDF

A Study on the Cut-slope Maintenance according to Anchor Tension Force (앵커 긴장력 변화에 따른 비탈면 유지관리 연구)

  • Park, Byungsuk;Kim, Wooseok;Hwang, Sungpil;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.673-682
    • /
    • 2020
  • The ground shear force at the expected failure surface and resistance force due to reinforced anchor can act as important factors according to a failure type from the stability viewpoint at a slope. Furthermore, the anchor's axial force may vary at an anchor-reinforced slope due to ground weathering, settlement, and corrosion in the incompletely anti-corrosion treated steel wire strand at a ground where the bearing plate is installed. However, in case that the resistance force of the anchor is locally lost due to the variation of the anchor's axial force, the resistance force may not play the role so that the external force tends to be transferred to the surrounding anchors, causing an increase in the tensile force in the surrounding anchors. Accordingly, a stability problem at the entire slope may occur, which requires much attention. Thus, this study proposed a method to monitor a variation trend of the tensile force of anchors installed at a slope and infer the external stability at the entire slope considering the monitoring result.

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

Optimization of Aerospace Structures using Reseated Simulated Annealing (수정 시뮬레이티드 어닐링에 의한 항공우주 구조물의 최적설계)

  • Ryu, Mi-Ran;Ji, Sang-Hyun;Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • Rescaled Simulated Annealing(RSA) has been devised for improving the disadvantage of Simulated Annealing(SA) which requires tremendous amount of computation time. RSA and SA have been for optimization of truss and satellite structures and for comparison of results from two algorithms. Ten bar truss structure which has continuous design variables are optimized.. As a practical application, a satellite structure is optimized by the two algorithms. Weights of satellite upper platform and propulsion module are minimized. MSC/NASTRAN is used for the static and dynamic analysis. The optimization results of the RSA are compared with results of the classical SA. The numbers of optimization iterations could be effectively reduced by the RSA.