• Title/Summary/Keyword: 전단감소

Search Result 1,365, Processing Time 0.023 seconds

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Effect of Feeding Whole Crop Barley Silage- or Whole Crop Rye Silage based-TMR and Duration of TMR Feeding on Growth, Feed Cost and Meat Characteristics of Hanwoo Steers (청보리 사일리지 TMR 또는 청호밀 사일리지 TME 급여 및 급여기간이 거세 한우의 증체, 사료비 및 육질특성에 미치는 효과)

  • Jin, Guang Lin;Kim, Jong-Kyu;Qin, Wei-Ze;Jeong, Jun;Jang, Sun-Sik;Sohn, Yong-Suk;Choi, Chang-Won;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.111-124
    • /
    • 2012
  • Feeding trial was conducted with 80 Hanwoo steers (7.5 months of age, 204.4 kg body weight) for 680 days from growing period to late fattening period to examine the feeding value of whole crop barley silage TMR (BS-TMR) and whole crop rye silage TMR (RS-TMR) on body gain, feed cost, slaughter characteristics and quality characteristics of $longissimus$ $dorsi$ muscle. Dietary treatments were conventional separate feeding of concentrate and rice straw (control), feeding BS TMR up to middle fattening period and same diet as for control during late fattening period (BS-TMR I), feeding BS-TMR for whole experimental period (BS-TMR II), feeding RS TMR up to middle fattening period and same diet as for control during late fattening period (RS-TMR I) and RS TMR for whole experimental period (RS-TMR II). Sixteen castrated calves were assigned to each treatment (4 pens, 4 heads per pen). Pens in each treatment were randomly distributed. Feeding both BS silage TMR and RS silage TMR slightly increased body gain of Hanwoo steers at the stages of growing and early fattening, and increased (P<0.0001) at middle fattening compared to feeding control diet while control diet tended to increase body gain at late fattening stage compared to feeding BS-TMR I, BS-TMR II and RS-TMR I diets. Total body gain was slightly increased in Hanwoo steers fed both I and II for BS and RS TMR compared to that in control diet. Feed cost per kg gain per head was relatively low in the Hanwoo steers fed silage TMRs to that fed control diet. Carcass weight, back fat thickness and $longissimus$ $dorsi$ area of Hanwoo steers tended to increase but lowered (P<0.047) yield index by feeding silage TMRs. Feeding BS TMR slightly decreased marbling score but no difference was found in the number of head over grade 1 between diets. Control diet tended to improve yield grade compared to silage TMRs. Chemical composition, water holding capacity, drip loss, cooking loss and pH, color and fatty acid composition of $longissimus$ $dorsi$ were not affected by experimental diets and feeding duration of silage TMRs. Shear force, however, was increased (P<0.046) by silage TMRs without difference between them compared to control diet. Based on the results of the current study, BS TMR and RS TMR could improve body gain and reduce feed cost without deteriorating meat quality compared to separate feeding of concentrate and rice straw. Overall feeding value was similar between BS TMR and RS TMR.

On the Wood Properties of Genus Pinus Grown in Korea (소나무속(屬)의 재질(材質)에 관(關)한 시험(試驗))

  • Jo, Jae-Myeong;Kang, Sun-Goo;Ahn, Jung-Mo;Lee, Chan-Ho;Jo, Nam-Suk;Shim, Chong-Supp;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.96-108
    • /
    • 1982
  • Pinus is one of the most important species supplying domestic industrial timbers such as constitutional lumber, pulpwood, and mine props. It occupies nearly 50 percent of the total forest resources in Korea. With above conception, to develop this forest resources and to obtain the basic data on the reasonable and effective utilization of Pinus, this study was carried out. Five species (P. koraiensis S. et Z., P. densiflora S. et Z., P. thunbergii Parlat, P. densiflara far erecta, P. rigida Miller) grown in Kwangnoong experimental forest stand, Chungcheongnam-Do, and Gangwon-Do regions were selected as sample trees. Anatomical, physical, mechanical and chemical properties of them were investigated.

  • PDF