• Title/Summary/Keyword: 전난류

Search Result 142, Processing Time 0.018 seconds

Sea Water Type Classification Around the Ieodo Ocean Research Station Based On Satellite Optical Spectrum (인공위성 광학 스펙트럼 기반 이어도 해양과학기지 주변 해수의 수형 분류)

  • Lee, Ji-Hyun;Park, Kyung-Ae;Park, Jae-Jin;Lee, Ki-Tack;Byun, Do-Seung;Jeong, Kwang-Yeong;Oh, Hyun-Ju
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.591-603
    • /
    • 2022
  • The color and optical properties of seawater are determined by the interaction between dissolved organic and inorganic substances and plankton contained in it. The Ieodo - Ocean Research Institute (I-ORS), located in the East China Sea, is affected by the low salinity of the Yangtze River in the west and the Tsushima Warm Current in the south. Thus, it is a suitable site for analyzing the fluctuations in circulation and optical properties around the Korean Peninsula. In this study, seawater surrounding the I-ORS was classified according to its optical characteristics using the satellite remote reflectance observed with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua and National Aeronautics and Space Administration (NASA) bio-Optical Marine Algorithm Dataset (NOMAD) from January 2016 to December 2020. Additionally, the variation characteristics of optical water types (OWTs) from different seasons were presented. A total of 59,532 satellite match-up data (d ≤ 10 km) collected from seawater surrounding the I-ORS were classified into 23 types using the spectral angle mapper. The OWTs appearing in relatively clear waters surrounding the I-ORS were observed to be greater than 50% of the total. The maximum OWTs frequency in summer and winter was opposite according to season. In particular, the OWTs corresponding to optically clear seawater were primarily present in the summer. However, the same OWTs were lower than overall 1% rate in winter. Considering the OWTs fluctuations in the East China Sea, the I-ORS is inferred to be located in the transition zone of seawater. This study contributes in understanding the optical characteristics of seawater and improving the accuracy of satellite ocean color variables.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.