• Title/Summary/Keyword: 전기-기계적 결합

Search Result 193, Processing Time 0.021 seconds

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Dielectric/piezoelectric Properties of Mn-Doped PMN-PZT with Variations of the Sintering Temperature and Addition of B2O3 (소결온도와 B2O3첨가량에 따른 Mn첨가 PMN-PZT의 유전 및 압전특성의 변화)

  • Shin Hyo-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.709-714
    • /
    • 2004
  • The additive of low temperature sintering in Mn-doped PMN-PZT known as high piezoelectric materials was studied in this experiment. B$_2$O$_3$ was used for the additive of low temperature sintering. The effects of sintering temperature in dielectric, and piezoelectric properties were investigated with the amounts of B$_2$O$_3$. Sintered density was increased in comparison with no addition and under 2wt% B$_2$O$_3$ and lower sintering temperature than 100$0^{\circ}C$. Therefore, in the low sintering temperature, the densification was improved by the addition of the B$_2$O$_3$. However, the sintering density was lower than that of the main composition in the case of the sintered at over 10$50^{\circ}C$. Dielectric constant with the addition of B$_2$O$_3$ was evaluated. The dielectric constant was 1000 2 wt% of B$_2$O$_3$ and sintered at 100$0^{\circ}C$. Under 2wt% of B$_2$O$_3$, the electromechanical coupling factor and the piezoelectric constant were not so much decreased. The electromechanical coupling factor and the piezoelectric constant were 50% and 300(${\times}$10$^{-12}$ C/N) respectively. The mechanical quality factor was increased with B$_2$O$_3$. The mechanical quality factor was 1700 at 0.5wt% B$_2$O$_3$ and sintered at 110$0^{\circ}C$. Dielectric loss was less than 0.5% regardless of the amount of B$_2$O$_3$.