• Title/Summary/Keyword: 전기 접촉 저항

Search Result 300, Processing Time 0.023 seconds

SiC(3C)/Si Photodetector (SiC(3C)/Si 수광소자)

  • 박국상;남기석;김정윤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.212-216
    • /
    • 1999
  • SiC(3C) photodiodes (PDs) were fabricated on p-type Si(111) substrates using chemical vapor deposition (CVD) technique by pyrolyzing tetramethylsilane (TMS) with $H_{2}$ carrier gas. Electrical properties of SiC(3C) were investigated by Hall measurement and current-voltage (I-V) characteristics. SiC(3C) layers exhibited n-type conductivity. Ohmic contact was formed by thermal evaporation Al metal through a shadow-mask. The optical gain $(G_{op})$ of the SiC(3C)/Si PD was measured as a function of the incident wavelength. For the analysis of the photovoltaic detection of the Sic(3C) n/p PD, the spectral response (SR) has calculated by using the electrical parameters of the SiC(3C) layer and the geometric structure of the PD. The peak response calculated for properly chosen parameters was about 0.75 near 550 nm. We expect a good photoresponse in the SiC(3C) heterostructure for the wavelength range of 400~600 nm. The SiC(3C) photodiode can detect blue and near ultraviolet (UV) radiation.

  • PDF

Potential Reduction and Energy Dispersion Due to Ionization Around the Submerged Ground Rod (수중에 잠긴 접지전극 주변에서의 이온화에 의한 전위저감 및 에너지방출)

  • Choi, Jong-Hyuk;Ahn, Sang-Duk;Yang, Soon-Man;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2009
  • Deeply-driven ground rod in the rainy season may contact with rainwater and ground water. When surge voltages are applied to the submerged ground rods, the ionization around the ground rods are occurred. Ionization in soil and/or water is affected in dynamic performance of ground rod systems. This work aims at studying the transient performance of ground rod system under impulse voltage using scale model in an electrolytic tank. The potential reduction and energy dispersion caused by ionization were treasured and quantitatively analyzed using the Matlab Program. As a result, the peak voltage at the terminal of ground rod was varied with water resistivity and charging voltage of Marx generator. The potential at the terminal of the ground rod was approximately reduced to a half of the applied voltage just below breakdown voltage. Also the energy more than half of the applied energy was dispersed through the ground rod due to ionization just below breakdown voltage.

Improved Mesh Grounding Electrode Model by Changing Arrangements of Internal Conductors of the Mesh Grounding Electrode (메쉬접지극의 내부도체 배치에 따른 개선된 메쉬접지극 모델)

  • Shim, Yong-Sik;Choi, Hong-Kyoo;Kim, Tae-Hoon;Song, Young-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.60-66
    • /
    • 2010
  • Mesh grounding electrodes in Korea and abroad are designed as lattice-shaped equidistance grounding grids. In case of a lattice-shaped grounding Grid, however, there is a problem of higher touch voltage at the corner of the grid relative to the center. To overcome this problem, we used oblique-shaped equidistance grounding grid to reduce the area of the corner where mesh voltage occurs. As a result the mesh voltage was reduced. Therefore, this paper suggests the use of oblique-shaped grounding grid instead of the existing lattice-shaped ones. It applied the same grounding design dimensions for both lattice-shaped and oblique-shaped grounding grids, compared and analyzed mesh voltage, GPR, ground resistance, total length of grounding conductor, verified that oblique-shaped grounding grid is superior to the lattice-shaped.

Low resistivity Ohmic Co/Si/Co contacts to n-type 4H-SiC (낮은 접촉 저항을 갖는 Co/Si/co n형 4H-SiC의 오옴성 접합)

  • Kim, C.K.;Yang, S.J.;Lee, J.H.;Cho, N.I.;Jung, K.H.;Kim, N.K.;Kim, E.D.;Kim, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.764-768
    • /
    • 2002
  • Characteristics of ohmic Co/Si/Co contacts to n-type 4H-SiC are investigated systematically. The ohmic contacts were formed by annealing Co/Si/Co sputtered sequentially. The annealings were performed at $800^{\circ}C$ using RTP in vacuum ambient and $Ar:H_2$(9:1) ambient, respectively. The specific contact resistivity$(\rho_c)$, sheet resistance$(R_s)$, contact resistance$(R_c)$, transfer length$(L_T)$ were calculated from resistance$(R_T)$ versus contact spacing(d) measurements obtained from TLM(transmission line method) structure. While the resulting measurement values of sample annealed at vacuum ambient were $\rho_c=1.0{\tiimes}10^{-5}{\Omega}cm^2$, $R_c=20{\Omega}$ and $L_T$ = 6.0 those of sample annealed at $Ar:H_2$(9:1) ambient were $\rho_c=4.0{\tiimes}10^{-6}{\Omega}cm^2$, $R_c=4.0{\Omega}$ and $L_T$ = 2.0. The physical properties of contacts were examined using XRD and AES. The results showed that cobalt silicide was formed on SiC and Co was migrated into SiC.

  • PDF

Low resistivity ohmic Pt/Ti contacts to p-type 4H-SiC (오옴성 접합에서의 낮은 접촉 저항을 갖는 Pt/Ti/P형 4H-SiC)

  • Lee, J.H.;Yang, S.J.;Kim, C.K.;Cho, N.I.;Jung, K.H.;Shin, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1378-1380
    • /
    • 2001
  • Ohmic contacts have been fabricated on p-type 4H-SiC using Pt/Ti. Low resistivitf Ohmic contacts of Pt/Ti to p-type 4H-SiC were investigated. Specific contact resistances were measured using the transmission line model method, and the physical properties of the contacts were examined using x-ray diffraction, scanning electron microscopy. Ohmic behavior with linear current-voltage characteristics was observed following anneals at $900^{\circ}C$ for 90sec at a pressure of $3.4{\times}10^{-5}$ Torr. The Pt/Si/Ti films was measured lower value of the specific contact resistance by the annealing process, and the contact resistances were improved more than one order compared to Ti contact the annealed sample. Scanning electron microscopy shows that the Pt layer effectively reduce the oxidation of Ti films. And results are obtained as $4.6{\times}10^{-4}$ ohm/$cm^2$ for a Pt/Ti metal structure after a vacuum annealing at $900^{\circ}C$ for 90sec. Titanium has a relatively high melting point, thus Ti-based metal contacts were attempted in this study.

  • PDF

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Electrochemical Properties of Activated Carbon Supecapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte (하이드로겔 고분자 전해질이 코팅된 술폰화 폴리프로필렌 격리막을 포함하는 활성탄 수퍼커패시터 특성)

  • Yoon, Choong Sub;Ko, Jang Myoun;Latifatu, Mohammed;Lee, Hae Soo;Lee, Young-Gi;Kim, Kwang Man;Won, Jung Ha;Jo, Jeongdai;Jang, Yunseok;Kim, Jong Huy
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.553-557
    • /
    • 2014
  • Sulfonated polypropylene (S-PP) is prepared by sulfuric acid-acetone aldol condensation reaction of polypropylene (PP) separator to yield hydrophilic separator surface with a moderate amount of $-SO_3H$ groups. Activated carbon supercapacitor is also fabricated adopting the S-PP separator coated with potassium polyacrylate (PAAK) hydrogel polymer electrolyte. As a result, the hydrophilic surface of S-PP separator involves better physical and electrochemical properties such as decrease in contact angle, improvements of wettability, electrolyte uptake, and ionic conductivity to give higher specific capacitance and long cycle-life.

Side-Wall 공정을 이용한 WNx Self-Align Gate MESFET의 제작 및 특성

  • 문재경;김해천;곽명현;임종원;이재진
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.162-162
    • /
    • 1999
  • 초고주파 집적회로의 핵심소자로 각광을 받고 있는 GaAs MESFET(MEtal-emiconductor)은 게이트 형성 공정이 가장 중요하며, WNx 내화금속을 이용한 planar 게이트 구조의 경우 임계전압(Vth:threshold voltage)의 균일도가 우수할 뿐만 아니라 특히 Side-wall을 이용한 self-align 게이트는 소오스 저항을 줄일 수 있어 고성능의 소자 제작을 가능하게 한다.(1) 본 연구의 핵심이 되는 Side-wall을 형성하기 위하여 PECVD법에 의한 SiOx 박막을 증착하고, 건식식각법을 이용하여 SiOx side-wall을 형성하였다. 이 공정을 이용하여 소오스 저항이 낮고 임계전압의 균일도가 우수한 고성능의 self-aligned gate MESFET을 제작하였다. 3inch GaAs 기판상에 이온주입법에 의한 채널 형성, d.c. 스퍼터링법에 의한 WNx 증착, PECVD법에 의한 SiOx 증착, MERIE(Magnetic Enhanced Reactive Ion Etcing)에 의한 Side-wall 형성, LDD(Lightly Doped Drain)와 N+ 이온주입, 그리고 RTA(Rapid Thermal Annealing)를 사용하여 활성화 공정을 수행하였다. 채널은 40keV, 4312/cm2로, LDD는 50keV, 8e12/cm2로 이온주입하였고, 4000A의 SiOx를 증착한 후 2500A의 Side-wall을 형성하였다. 옴익 접촉은 AuGe/Ni/Au 합금을 이용하였고, 소자의 최종 Passivation은 SiNx 박막을 이용하였다. 제작된 소자의 전기적 특성은 hp4145B parameter analyzer를 이용한 전압-전류 측정을 통하여 평가하였다. Side-wall 형성은 0.3$\mu\textrm{m}$ 이상의 패턴크기에서 수직으로 잘 형성되었고, 본 연궁에서는 게이트 길이가 0.5$\mu\textrm{m}$인 MESFET을 제작하였다. d.c. 특성 측정 결과 Vds=2.0V에서 임계전압은 -0.78V, 트랜스컨덕턴스는 354mS/mm, 그리고 포화전류는 171mA/mm로 평가되었다. 특히 본 연구에서 개발된 트랜지스터의 게이트 전압 변화에 따른 균일한 트랜스 컨덕턴스의 특성은 RF 소자로 사용할 때 마이크로 웨이브의 왜곡특성을 없애주기 때문에 균일한 신호의 전달을 가능하게 한다. 0.5$\mu\textrm{m}$$\times$100$\mu\textrm{m}$ 게이트 MESFET을 이용한 S-parameter 측정과 Curve fitting 으로부터 차단주파수 fT는 40GHz 이상으로 평가되었고, 특히 균일한 트랜스컨덕턴스의 경향과 함께 차단주파수 역시 게이트 바이어스, 즉 소오스-드레스인 전류의 변화에 따라 균일한 값을 보였다. 본 연구에서 개발된 Side-wall 공정은 게이트 길이가 0.3$\mu\textrm{m}$까지 작은 경우에도 사용가능하며, WNx self-align gate MEESFET은 낮은 소오스저항, 균일한 임계전압 특성, 그리고 높고 균일한 트랜스 컨덕턴스 특성으로 HHP(Hend-Held Phone) 및 PCS(Personal communication System)와 같은 이동 통신용 단말기의 MMICs(Monolithic Microwave Integrates Circuits)의 제작에 활용될 것으로 기대된다.

  • PDF

Fabrication and Electrical Characteristics of $p^{+}$-n Ultra Shallow Junction Diode with Co/Ti Bilayer Silicide (Co/Ti 이중막 실리사이드를 이용한 $p^{+}$-n극저접합 다이오드의 제작과 전기적 특성)

  • Chang, Gee-Keun;Ohm, Woo-Yong;Chang, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.288-292
    • /
    • 1998
  • The p*-n ultra shallow junction diode with Co/Ti bilayer silicide was formed by ion implantation of $BF_{2}$ energy : 30KeV, dose : $5\times10^{15}cm^{-2}$] onto the n-well Si(100) region and RTA-silicidation of the evaporated Co($120\AA$)/Ti($40\AA$) double layer. The fabricated diode exhibited ideality factor of 1.06, specific contact resistance of $1.2\times10^{-6}\Omega\cdot\textrm{cm}^2$ and leakage current of $8.6\muA/\textrm{cm}^2$(-3V) under the reverse bias of 3V. The sheet resistance of silicided emitter region, the boron concentration at silicide/Si interface and the junction depth including silicide layer of ($500\AA$ were about $8\Omega\Box$, $6\times10^{19}cm^{-3}$, and $0.14\mu{m}$, respectively. In the fabrication of diode, the application of Co/Ti bilayer silicide brought improvement of ideality factor on the current-voltage characteristics as well as reduction of emitter sheet resistance and specific contact resistance, while it led to a little increase of leakage current.

  • PDF