• Title/Summary/Keyword: 전기 분무

Search Result 178, Processing Time 0.026 seconds

Fabrication of Polymer Nanofibers using Electrospinning (전기방사를 이용한 PEO 나노섬유 제조)

  • Kim, G.T.;Ahn, Y.C.;Lee, J.K.;Kattamuri, Nirupama;Sung, C.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning method. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension, then electrospinning occurs and nanofibers are made. Polyethylene oxide(PEO) have been electrospun in our laboratory Electrospun PEO fibers are observed by scanning electron microscopy or transmission electron microscopy In thl:; study. the average diameter of the electrospun fibers decreases with decreasing PEO concentration and increasing electric field strength. The optimal conditions for producing uniform PEO 100nm fibers are the 10wt% PEO concentration at a voltage 25 to 30kV and a distance of 10cm from tip to collector.

  • PDF

Formulation and Magnetic properties of Sr-ferrite powders by Modified spray co-roasting (단순화된 분무열분해법을 이용한 Sr-ferrite 제조와 자기특성)

  • 김효준;조태식;남효덕;양충진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.49-52
    • /
    • 1998
  • Preparation of hexagonal strontium-ferrite by modified spray co-roasting(MSC:H) which is expected to shorkn the length of the process and to elevate the magnetic properties of hard ferrite was studied. We prapared $Fe_2O_3/SrCO_3$ mixture powders by MSCR after stirring ionized $FeCI_2$ in distilled water with solid state $SrCO_3$. And then calcined the mixture powders up to $1150^{\circ}C$ for Sr-ferrite powders It is possible to prepare hexaferrite powders with high saturation magnetization (Ms > 69 emu/g) , coercivity (Hc > 4000 Oe) The nlagnetic values of saturation magnetization iire higher than those achieved by the conventional technique.

  • PDF

Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position (전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성)

  • Taehun Kim;Minseok Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

Lean Burn Combustion Characteristics of Propane Premixed Flame in Electric Field (전기장 인가에 따른 프로판 예혼합 화염의 희박연소 특성)

  • Minseok Kim;Junyoung Choi;Taehun Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • In this study, characteristics of a propane-air premixed flame sin DC electric field was investigated. The stainless steel Bunsen burner and the stainless steel ring were used as electrode, and the high voltage supply was used for applying electric field. Flammability range increased significantly when the positive voltage was applied because of extension of LBO limit, while it shrank when the negative voltage was applied. The reason for this was not much related to the burning velocity, but the induced flow around the burner by electric field. withNOx production slightly increased after positive voltage was applied in identical equivalence ratio. Nevertheless, it was advantageous to apply the positive electric field to reduce the NOx since the extension of LBO limit makes the burner possible to operate in very low equivalence ratio.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

Flow Characteristics of Propane Premixed Flame on AC Electric Field (교류 전기장 인가에 따른 프로판 예혼합 화염의 유동 특성)

  • Boyun Kim;Minseok Kim;Taehun Kim;Ilsong Kweon;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • This study investigates the flow characteristics of propane-air premixed flames on AC electric field using the Schlieren method. A voltage was applied to the ring electrode and the burner was grounded to form an electric field, and the applied voltage was fixed at 16 kV (Vpp). Results show that under the application of AC electric fields, flow around the flame oscillated only at frequencies below 50 Hz, and no oscillation was observed above this frequency range. Flame height oscillated with frequency in the range of 25 to 300 Hz, with frequency doubling observed in the range of 25 to 150 Hz. The flammability limit increased with frequency up to 250 Hz, but in the high-frequency range above 250 Hz, the flammability limit did not increased and converged.

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Study on super-hydrophobic electro-spray micro thruster and measurement of micro scale thrust (초소수성 전기 분무 마이크로 추진 장치 및 마이크로 추력 측정)

  • Lee, Young-Jong;Yoo, Yong-Hoon;Tran, Si Bui Quang;Kim, Sang-Hoon;Park, Bae-Ho;Buyn, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • In this article, we fabricated polytetrafluoroethylene(PTFE) nozzle treated by ion beam, in order to fabricate polymer based electrospray micro thruster with super hydrophobic nozzle. To obtain the super hydrophobic surface, PTFE surface is treated by argon and oxygen plasma treatment process. The optimal condition is investigated argon and oxygen flow rate as well as the paalied energy level for the treatment process. Fabricated nozzle was evaluated by measuring contact angle, and the surface morphology was examined by using scanning electron microscope(SEM) and atomic force microscope(AFM). We observe that jetting becomes more stable and repeatable on the treated nozzle. And to evaluate performance of fabricated nozzle, we measure micro scale thrust using a cantilever and a nozzle treated by ion beam laser displacement sensor.

An Experimental Study on Electrohydrodynamic Atomization of Non-Conducting Liquid (비전도성 액체의 전기수력학적 분무에 관한 실험적 연구)

  • Lee, Ki-Joon;Park, Jong-Seung;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1322-1327
    • /
    • 2004
  • In the present work, a series of experiments have been performed on electro-hydrodynamic atomization of non-conducting liquid using a charge injection type nozzle. Effects of liquid flow rate, input voltage, and distance between the needle and the ground electrode (nozzle-embedded metal plate) have been examined. For fixed electrode distances, total and spray currents increase with increase of liquid flow rate and input voltage. When the distance between the needle and the ground electrode becomes closer, total, leakage and spray current increase, but the onset voltage for dielectric breakdown decreases. When the electric field strength of the liquid jet exceeds that for the air breakdown, a portion of the electric charges in the liquid jet is dissipated into the ambient air, and the charge density shows a limiting value. Atomization quality can be improved by increasing the flow rate because the higher charge density is achieved with the larger liquid velocity in addition to the enhanced aerodynamic effect.

  • PDF