• 제목/요약/키워드: 전기화학 촉매활성

검색결과 107건 처리시간 0.027초

고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극 (Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells)

  • 김지수;심은주;다오 반 두옹;최호석
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.262-267
    • /
    • 2016
  • 본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종 나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지의 상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.

일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석 (Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide)

  • 이소연;이석희;천재기;우희철
    • 청정기술
    • /
    • 제13권1호
    • /
    • pp.54-63
    • /
    • 2007
  • 고분자 전해질 연료전지에 사용되는 개질 수소 속에는 미량의 일산화탄소가 존재할 수 있으며, 이는 연료전지의 백금 성분의 양극 전극을 비활성화로 이끌며, 그로 인하여 전기 출력이 급격히 떨어지게 된다. 본 연구는 담체의 조성을 달리한 여러 가지 $Cu/Ce_xZr_{1-x}O_2$ (x=0.0-1.0) 촉매들을 합성하고 그들 특성이 분석되었으며, 또한 일산화탄소의 산화반응과 수소 분위기에서의 일산화탄소에 대한 선택적 산화반응을 수행하였다. 이들 촉매들은 수열합성법과 침적-침전법을 조합하여 제조되었으며, XRD, XRF, SEM, TEM, BET, $N_2O$ 분해실험, 산소저장능력 측정 기법 등에 의해 그들의 물리화학적 성질들이 분석되었다. 담체의 조성과 반응물 산소의 과잉정도에 따른 영향들이 여러 반응온도에서 반응활성과 이산화탄소 선택도 등에 의해 조사되어졌다. 합성된 여러 조성을 달리한 $Cu/Ce_xZr_{1-x}O_2$ 촉매들 가운데 $Cu/Ce_{0.9}Zr_{0.1}O_2$$Cu/Ce_{0.7}Zr_{0.3}O_2$ 두 가지 촉매는 $170^{\circ}C$ 반응온도 부근의 PROX 반응에서 99% 이상의 CO 전환율과 50% 내외의 선택도를 나타내었다. 이와 같은 비교적 완화된 조건에서의 우수한 활성은 높은 산소저장능력을 지닌 $Ce_xZr_{1-x}O_2$ 담체를 사용함으로서 구리촉매의 산호-환원 활성이 증가한 것에 기인하며, 결국 수소분위기에서의 일산화탄소의 산화 반응에 대한 높은 활성과 선택도를 이끌었다.

  • PDF

PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향 (Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis)

  • 추천호;양종원;나일채;박윤진
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.202-207
    • /
    • 2023
  • 태양광과 풍력발전의 잉여전기를 공급받아 수전해를 구동하는 경우 날씨 변동에 따라 구동과 정지를 반복해야한다. 수전해를 구동하다 정지하면 잔류 수소와 산소에 의해 PEM 연료전지와 같은 상태가 되고, 구동 중 형성된 수전해의 높은 전위 때문에 전극과 고분자막이 정지 중에도 열화될 가능성이 높다. 본 연구에서는 PEM 수전해가 구동/정지 반복과정에서 전극과 고분자막의 열화가 얼마나 진행되는지 확인하고자, 144시간 동안에 구동/정지 횟수를 변화시키며 성능 감소를 측정하였다. 전극 촉매 활성면적 변화와 고분자막의 수소투과도와 불소유출속도 등을 분석해 전극과 고분자막의 특성 변화를 측정했다. 전체적으로 정지 횟수가 증가할수록 PEM 수전해 성능이 감소했다. 144시간동안에 5회 정지했을 때 IrOx 촉매 활성이 30% 이상 감소하였고, 수소투과도는 80% 증가해서 전극과 고분자막이 모두 열화됨을 확인했다.

티타늄 함유 텅스텐 산화물 광촉매를 이용한 메탄올/물 분해로부터 수소제조 (Hydrogen Production from Photocatalytic Splitting of Methanol/water Solution over Ti Impregnated WO3)

  • 이가영;박유진;박노국;이태진;강미숙
    • 청정기술
    • /
    • 제18권4호
    • /
    • pp.355-359
    • /
    • 2012
  • 본 연구에서는 보다 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 산화텅스텐에 티타늄을 함침하여 $Ti/WO_3$ 나노입자를 제조하였다. 제조한 $Ti/WO_3$의 물리적 특성은 X-선 회절분석법(XRD), 주사전자현미경(SEM), 발광분광계(PL), 원자간력 현미경(AFM), 정전기 현미경(EFM)을 통해 확인하였다. 메탄올/물 (1/1) 광분해 수소제조 실험 결과, 순수 아나타제 티타니아나 산화텅스텐 광촉매보다 $Ti/WO_3$ 광촉매에서 촉매활성이 향상되었으며, 0.5 g의 0.10 mol % $Ti/WO_3$ 촉매를 사용한 경우 8시간 반응 시 3.02 mL의 수소가 발생되었다.

비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보) (Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I))

  • 조기형;최용국;김상복
    • 대한화학회지
    • /
    • 제36권2호
    • /
    • pp.261-272
    • /
    • 1992
  • 네자리 Schiff base의 착물 Co(II)(3MeOSED)$(H_2O)_2$을 합성하였다. 이 착물의 균일 산화 활성촉매로서 산소첨가 착물은 DMF와 DMSO 용매에서는 ${\mu}$-peroxo형인 [Co(III)(3MeOSED)(DMF)]$_2O_2$와 [Co(III)(3MeOSED)(DMSO)]$_2O_2$이나 pyridine 용매에서는 superoxo형인 [Co(Ⅲ)(3MeOSED)(Py)]$O_2$로 주어진다. 이들의 CV법과 DPP법에 의한 전기화학적인 특성으로 ${\mu}$-peroxo형은 3단계 환원과정으로 일어나지만, superoxo형은 $O_2$의 prewave를 포함한 4단계 환원과정으로 일어난다. 산소가 포화된 메탄올 용액에서 [Co(III)(3MeOSED)(L)]$O_2(L: CH_3OH)$ 의 균일 산화 활성촉매에 의한 hydrazobenzene-$(H_2AB)$의 산화 주생성물은 trans-azobenzene(t-AB)이 선택적으로 다음과 같은 반응식으로 생성되고 이 때 속도상수는 k = (2.96 ${\pm}$ 0.2) ${\times}$ $10^{-1}$M/sec임을 알았다. $H_2AB$ + Co (Ⅱ)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 (A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis)

  • 김인겸;나인욱;박세규
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.854-862
    • /
    • 2016
  • 최근 화석연료를 대체할 친환경 신재생에너지에 대한 요구가 증가하면서 수소에너지가 미래 대체에너지원으로서 주목받고 있다. 수소를 생산하는 방법 중 수전해 기술은 에너지효율과 안정성이 뛰어난 장점이 있지만, 산소발생반응시 발생하는 높은 과전압은 여전히 단점으로 지적되고 있다. 본 연구에서는 분무열분해 공정을 통하여 Co 전구체로부터 $Co_3O_4$를 제조하였다. 또한, urea, sucrose, citric acid의 유기물첨가제를 사용하여 다양한 입자 크기와 표면형상을 가지는 $Co_3O_4$를 제조하였고, 필요에 따라 추가로 열처리를 실시하였다. 합성한 $Co_3O_4$의 물리적 특성을 분석하기 위해 X-선 회절 분석(XRD)으로 결정성을 조사하였고, 주사전자현미경(SEM)과 투과전자현미경(TEM)으로 입자형상 및 표면을 분석하였다. 질소 흡 탈착 시험을 통해 촉매의 비표면적 및 기공부피를 측정하였고, 질소도핑을 확인하기 위해 X-선 광전자 분광법(XPS)을 사용하였다. 촉매의 산소발생반응 활성을 알아보기 위해 3전극 셀에서 선형주사전위법(LSV)으로 전기화학적 거동을 분석하였다. 첨가제를 사용하지 않은 $Co_3O_4$가 가장 우수한 활성을 보였고, 이는 분무열분해법을 통하여 상대적으로 작은 입자형성과 높은 비표면적의 영향인 것으로 판단된다.

화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가 (Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application)

  • 성승화;이보련;최욱;김태현
    • 멤브레인
    • /
    • 제29권3호
    • /
    • pp.173-182
    • /
    • 2019
  • 화석연료 사용이 증가하면서 온실가스 및 대기오염가스 등의 환경오염 문제가 심각해졌다. 이를 해결하기 위한 신재생에너지, 친환경적인 대체에너지원을 찾기 위한 많은 연구가 이뤄지고 있다. 연료전지는 전기에너지를 발생하며 부산물로 물만이 생성되는 친환경 에너지 발생장치다. 특히, 전해질로 음이온 교환막을 사용하는 음이온 교환막 연료전지(Anion Exchange Membrane Fuel Cell)는 높은 촉매의 활성으로 양이온 교환막 연료전지(Proton Exchange Membrane Fuel cell)와 다르게 저가의 금속 촉매를 사용할 수 있는 장점 때문에 관심이 높아지고 있다. 음이온 교환막으로써 요구되는 주요 특성은 높은 이온($OH^-$) 전도도 및 높은 pH의 구동조건에서의 안정성이다. 본 연구에서는 PPO계 고분자의 화학적 가교 반응을 이용해 얻어진 가교형 고분자 막의 낮은 기계적인 특성과 치수 안정성을 높이기 위해 보다 높은 분자량을 갖는 고분자 사용과 함께 가교율 증대를 통해 보다 높은 이온 전도도와 기계적인 성질, 높은 화학적인 안정성뿐만 아니라 실제 연료전지 구동조건에서 높은 셀 성능을 갖는 AEMFC용 고분자 전해질 막을 개발했다.

고분자전해질 연료전지에서 박막의 화학적 내구성 평가 (Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells)

  • 오소형;유동근;정성기;정지홍;박권필
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.362-367
    • /
    • 2023
  • 최근 고분자 전해질 연료전지(PEMFC)에서 고분자 막의 연구개발은 가격 저감과 성능 향상을 위해 박막화하는 방향으로 진행되고 있다. 그리고 상용차용 수소 전기 차량 수요가 증가하고 있는데, 승용차용보다 내구성이 5배 증가해야 한다. 막의 두께가 얇아짐에도 불구하고 내구성은 5배 증가해야 하므로, 막의 내구성 향상이 더 중요해진 상황이다. 가속 내구 평가 시간도 단축해야하기 때문에 기존 프로토콜에서 공기 대신 산소를 사용한 프로토콜을 10 ㎛ 박막에 적용해 내구성을 평가하였다. 가속 내구 평가(개회로 전압 유지)는 720시간에 종료하였다. 공기를 사용한 미국 에너지부(DOE) 프로토콜을 사용했다면 약 1,500시간의 내구성으로 운전시간 450,000 km 수명을 예상한다. 화학적 내구 평가중에 전극의 활성 면적이 51% 감소해 촉매 열화가 막 내구성 약화에 영향을 준 것으로 판단되고, 촉매 열화 속도를 감소시키면 막 내구성이 증가할 것으로 예상된다.

침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교 (Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection)

  • 유재철;박영현;이태호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.589-593
    • /
    • 2016
  • 미생물연료전지(Microbial Fuel Cell; MFC)는 전기화학활성미생물로 불리는 미생물을 촉매로 이용하여, 유/무기물의 산화환원 반응을 통해서 전기에너지를 생산할 수 있는 장치이다. 단일 MFC에서 발생하는 낮은 전기생산량을 극복하기 위해, 다수의 형태의 MFC를 직렬 또는 병렬로 연결하는 방법이 연구되고 있다. 본 연구에서는 6개의 단위 막전극접합체(Separator Electrode Assembly; SEA)로 구성된 침지평판형과 직립평판형 MFC 스택을 운전하였다. 단위 MFC와 MFC 스택의 전기발생량을 비교하였으며, 이를 통해서 MFC의 최적 스택기술을 확보하기 위한 기초자료로 활용하고자 하였다. 모든 SEA가 산화전극부를 공유하고 있는 침지평판형 MFC의 경우, 직렬과 병렬을 함께 사용할 경우, 단일 연결 방식을 사용하는 것보다 전압의 손실이 더 크게 나타났으며, 단일 연결방법 중 병렬연결 하는 것이 손실을 최소화 할 수 있는 것으로 나타났다. 직립평판형 MFC의 경우, 산화전극부를 공유하고 있는 SEA만 직렬 연결할 경우에는 전압의 손실이 크게 나타났으며, 산화전극부를 공유하고 있는 SEA간에 병렬 연결 후, 병렬 연결된 SEA를 직렬연결하는 방식이 전압의 손실을 최소화 할 수 있을 것으로 나타났다.

직접 메탄올 연료전지용 PtRu/GNF 성능에 대한 화학적 처리의 영향 (Effect of Chemical Treatment on Performance Behaviors of PtRu/GNFs Catalysts for DMFCs)

  • 박수진;박정민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2009
  • In the present study, the effect of chemical treatment on graphite nanofibers (GNFs) supports with various concentrated nitric acids was investigated for methanol oxidation. To optimize the electrocatalytic activity, PtRu catalysts were deposited on GNF supports by impregnation method. The surface and structural properties of the GNF supports were characterized by X-ray photoelectron spectroscopy (XPS), element analyzer (EA), and X-ray diffraction (XRD). The morphology of the catalysts was observed by means of transmission electron microscopy (TEM). The electrocatalytic activity of PtRu/GNF catalysts was investigated by cyclic voltammetry measurement. As a result, the oxygen functional groups were introduced on the GNF supports and were gradually increased with increasing of concentrated nitric acid, causing the smaller particle size and higher loading level. And the electrocatalytic activity of the catalysts for methanol oxidation was gradually improved. Consequently, it was found that chemical treatments could influence on surface properties of the carbon supports, resulting in enhancing the electrocatalytic activity of the catalysts for DMFCs.

  • PDF