• Title/Summary/Keyword: 전기통신시스템

Search Result 1,740, Processing Time 0.028 seconds

Time-Frequency Analysis Using Linear Combination Wavelet Transform and Its Application to Diagnostic Monitoring System (선형조합 웨이브릿 변환을 사용한 시간-주파수 분석 및 진단 모니터링 시스템의 적용)

  • 김민수;권기룡;김석태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.83-95
    • /
    • 1999
  • Wavelet transform has localization for time or frequency. It is useful to analyze a nonstationary signal. Basic function on wavelet transform is generated dilating and translating the original wavelet(mother wavelet). In this paper, time-frequency analysis method using linear combination wavelet transform is proposed. And it is applied to diagnostic monitoring system using the proposed linear combination wavelet transform. The stationary and nonstationary signal is used linear chirp signal, fan noise signal, a sinusoid signal from revolution body, electronic signal. Transform applied to signal analysis use fast Fourier transform (FFT), Daubechies, Haar and proposed linear combination method. The result of time-frequency analysis using linear combination wavelet transform is suited for portraying nonstationary time signal as well as stationary signal. Also the diagnostic monitoring system carry out the effective the signal analysis.

  • PDF

Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation (영농형 태양광 발전의 진단을 위한 지능형 예측 시스템)

  • Jung, Seol-Ryung;Park, Kyoung-Wook;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.859-866
    • /
    • 2021
  • Agricultural Photovoltaic power generation is a new model that installs solar power generation facilities on top of farmland. Through this, it is possible to increase farm household income by producing crops and electricity at the same time. Recently, various attempts have been made to utilize agricultural solar power generation. Agricultural photovoltaic power generation has a disadvantage in that maintenance is relatively difficult because it is installed on a relatively high structure unlike conventional photovoltaic power generation. To solve these problems, intelligent and efficient operation and diagnostic functions are required. In this paper, we discuss the design and implementation of a prediction and diagnosis system to collect and store the power output of agricultural solar power generation facilities and implement an intelligent prediction model. The proposed system predicts the amount of power generation based on the amount of solar power generation and environmental sensor data, determines whether there is an abnormality in the facility, calculates the aging degree of the facility and provides it to the user.

SLNR-Based Precoder Design for Multiuser MIMO in Distributed Antenna Systems (분산 안테나 시스템에서 다중 사용자 MIMO를 위한 SLNR 기반의 프리코더 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.75-82
    • /
    • 2018
  • In this paper, we consider a precoder design for downlink multiuser multiple-input multiple-output (MU-MIMO) in distributed antenna systems (DAS). In DAS, remote radio heads (RRHs) are placed at geographically different locations within a cell area. Three different precoder design schemes are proposed to maximize the separate or joint signal-to-leakage-plus-noise ratio (SLNR) metrics by considering RRH sum power or per-RRH power constraints. The analytical closed-form form solution for each optimization problem is presented. Through computer simulation, we show that the joint SLNR based precoding schemes have better signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER) performances than the separate SLNR based schemes. Also, it is shown that the precoding scheme with RRH sum power constraint has better performance than the precoding scheme with per-RRH power constraint.

Design of a customizable fluorescence detection system for fluorescently labeled tumor cells (형광 발현 암세포 탐지를 위한 맞춤형 검출시스템 개발)

  • Cho, Kyoungrae;Seo, Jeong-hyeok;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-266
    • /
    • 2019
  • Flow cytometry is an electrical detection system that provides precise and diverse optical properties to cells and micro particles. Flow cytometry, which provides multidimensional information including cell size and granularity through light scattering and fluorescence emission generated by the induction of light of a specific wavelength to the fluorescently treated cells or micro particles, plays an important role in biomedical and biophysical fields. However, it has some drawbacks such as high cost, size of the instrument and limitation in selecting fluorescent dyes. Therefore, in this paper, a low cost compact fluorescent detection system is developed using light-emitting diode and microcontroller. The proposed fluorescence detection system has a replaceable the light source/fluorescence filter/photodetector and constructed by 3D printer, so that the user can design a customized system according to the selected fluorescent dyes. The fluorescence intensity was measured by varying the number of fluorescently labeled cells, and the measured intensities showed a high linearity within the tested concentration ranges.

Energy saving control system of wireless base station utilizing natural air-conditioning (자연공조를 활용한 무선기지국 Energy절감 제어시스템)

  • Ryu, Gu-Hwan;Kwon, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.223-232
    • /
    • 2019
  • With the development of the information communication industry, the size of the communication device has been reduced to a system that generates a large amount of heat. Therefore, since the amount of heat generated by the wireless equipment is large in the wireless base station, the energy consumption is continuously consumed and the failure of the wireless base station may occur. Therefore, in this study, The study was analyzed. As a research method, we performed base station with a lot of calorific value and electric charge. We selected 25 base stations and obtained data for two weeks. To ensure reliability, the room temperature was kept constant at $27^{\circ}C$, and the control system was installed and equiped for two weeks to obtain the date analysis. In order to calculate the test results in the study method, the instrument was used with a computer, a digital thermometer, and dust measurement. For the date analysis, we conducted a research study on 25 wireless basestations before and after the installation of Control Sysetm.

Design of a New IoT Management System for Efficient Recovery of Shared Electric Kickboards (공유형 전동킥보드의 효율적 회수를 위한 새로운 IoT 관리시스템 설계)

  • Jang, Eun-Jin;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.189-194
    • /
    • 2021
  • With the recent increase in the proportion of single-person households, starting in 2016, the domestic shared personnel mobility market such as electric kickboards and electric wheels has grown rapidly. Personal transportation means such as electric kickboards are power devices using electricity and are eco-friendly, lightweight, and do not occupy a separate parking space. Above all, it has the advantage of being convenient to travel short and medium distances, so it has been able to obtain a lot of demand from younger users who pursue reasonable consumption, and accordingly, the related market has grown rapidly. However, as absence of the charging station for electric kickboards, electric kickboards are left everywhere on the road, and are emerging as a threat to safety as well as aesthetics. Therefore, this paper aims to research and propose a new IoT management system for efficient recovery of shared electric kickboards. Through this system, it is expected that the high recovery rate of the electric kickboard can be maintained, and in conclusion, the safety of the user and the surrounding environment can be improved.

A Study on Solar Charging System for Stable Battery Use of Electric Kickboard (전동킥보드의 안정적 배터리 사용을 위한 태양광 충전 시스템에 관한 연구)

  • Jang, Eun-Jin;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.175-179
    • /
    • 2021
  • With the recent increase in the proportion of single-person households, the demand for reasonable personal mobility has increased, and the "Personal Mobility" industry that can be used conveniently and concisely has grown rapidly. In fact, according to data from the Korea Transport Institute, the scale of the electric kickboards rental industry, one of the personal mobility industry sectors, is expected to expand to 200,000 units in 2022. Due to the characteristics of electric kickboards that are powered by electricity, stable and efficient battery supply is the most basic and important issue. According to recent reviews from users who have used the electric kickboard, there were cases where the use of the electric kickboard is attempted, but the battery is in a discharged state or the battery charge level is low and thus cannot be used. Therefore, this paper proposes a solar charging system for stable battery use of electric kickboards. When this system is applied, it is expected that it will not only be an eco-friendly charging method for electric kickboards, but also stably supply and demand batteries while driving.

Intelligent Lighting Development having Auto-Address in DMX512 Protocol (DMX512 프로토콜에서 자동주소를 갖는 지능형 조명 단말기 개발)

  • Choi, Seong-Cheol;Lee, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1233-1238
    • /
    • 2010
  • The lighting industry has become the bigger and more systemized using the semiconductor LED with each control R(Red), G(Green), B(Blue). The communication standard DMX512(ANSI E1.11) protocol of it basically needs the address which can be distinguished between the lighting terminals. The conventional method has to give the address of the lighting any methods like dip switch, EEROM and PROM. Then the lighting terminal can receive RGB data from DMX512 communication. According to electrical characteristics DMX512 protocol has to the splitter every 32 lighting terminals. If 512 lightings is all connected, maximum 16 splitters are needed. This paper is solved above weakness in DMX512 protocol using serial connection all lighting terminals. Also I developed the intelligent lighting terminal with auto-addressing. This was solved the inconvenience of the address assignment and the usage of the splitter. The developed products is applied and selled the semiconductor lighting terminals using ON-OFF control, dimming control, sequential control and rainbow control.

Spectral Modeling of Haegeum Using Cepstral Analysis (캡스트럼 분석을 이용한 해금의 스펙트럼 모델링)

  • Hong, Yeon-Woo;Kang, Myeong-Su;Cho, Sang-Jin;Kim, Jong-Myon;Lee, Jung-Chul;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • This paper proposes a spectral modeling of Korean traditional instrument, Haegeum, using cepstral analysis to naturally describe Haegeum sounds varying with time. To get a precise result of cepstral analysis, we set the frame size to 3 periods of input signal and more cepstral coefficients are used to extract formants. The performance is enhanced by flexibly controlling the cutoff frequency of bandpass filter depending on the resonances in the synthesis process of sinusoidal components and the deleting peaks remained in the residual signal. To detect the change of pitch, we divide the input frames into silence, attack, and sustain region and determine which region the current frame is involved in. Then, the proposed method readjusts the frame size according to the fundamental frequency in the case of the current frame is in attack region and corrects the extraction errors of the fundamental frequency for the frames in sustain region. With these processes, the synthesized sounds are much more similar to the originals. The evaluation result through the listening test by a Haegeum player says that the synthesized sounds are almost similar to originals (96~100 % similar to the original sounds).

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.