• Title/Summary/Keyword: 전기체

Search Result 3,399, Processing Time 0.042 seconds

Development of Remote Reld Testing Technique for Moisture Separator & Reheater Tubes in Nuclear Power Plants (원자력발전소 습분분리재열기 튜브 원격장검사 기술 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator & reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator & reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator & reheater tube of nuclear power plants.

Effects of CellCaSi and Inorganic Additives on Phosphorus Removal in Water (규산질다공체와 무기첨가물의 수중 인 제거 효과)

  • Park, Myung-Hwan;Han, Myung-Soo;Lee, Seog-June;Ahn, Chi-Yong;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.213-219
    • /
    • 2002
  • The CellCaSi, a porous silicate material, was tested for the removal of phosphorus (P as phosphate) in water. The effect of the CellCaSi was investigated on the basis of both particle size (under 1,2, and 4 mm) and added amount (0, 1, 2.5, 5, and 10 g/1) of the CellCaSi. The removal efficiency of phosphorus was highest with a particle size of under 1 mm and also increased with an increasing amount of the CellCaSi. The pH change showed little effect on the phosphorus removal of the CellCaSi. The calcium ion was eluted from the CellCaSi into the water, while the aluminium and iron were not. The eluted calcium ion was combined with dissolved phosphorus and then precipitated. The highest removal efficiency of phosphorus was obtained by the combined addition of the CellCaSi, calcium chloride, and ferric chloride. That is, the phosphorus concentrations of 0.10 and 1.0 mg/1 decreased to 0.03 and 0.47 mg/l by the addition of the CellCaSi (1 g/l), calcium ion (30 mg/l), and ferric ion (1 mg/l) at day 8 after treatment. The water qualities at the end of the experiment were as follows: pH was 8.1 and conductivity was 318 ${\mu}$S/cm (a registered maximum conductivity of 500${\mu}$S/cm for raw and potable wafers).

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

Using ultrasound infrared thermography to detect defects in lap joint Friction stir welding (초음파 적외선 열화상을 이용한 마찰교반용접부의 결함 검출)

  • Park, Hee-Sang;Choi, Man-Young;Park, Jung-Hak;Lee, Young-Ho;Choi, Won-Young;Ko, Jun-Bin;Choi, Won-Doo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • 알루미늄 합금 재질은 무게의 경량화와 기계적강도가 우수하며 다른 비철금속에 비하여 값이 저렴한 장점이 있다. 현재 산업현장에서 활용하는 가장 흔한 접합법으로 TIG, RSW 등과 같은 용융 용접법을 현재는 많이 사용 하고 있지만 열전도도가 높아 열 확산이 빠르고, 이에 따라 모재의 팽창이 일어나 열변형을 유발하며, 산화피막은 그 내부에 함유된 결정수가 아크용접 중 분해되어 수소를 방출함으로 기공이 발생하여 부도체로 저항용접시 전도성을 방해하는 등의 문제를 발생시킨다. 또한 철에 비해 4배정도 큰 전기전도율에 따라 저항용접시 대전류를 사용해야 하는 등의 문제점이 발생하고 있다. 이와 같은 알루미늄 합금의 용융용접 과정에서 발생하는 단점을 극복하는 기술로 고상접합 방법인 마찰교반용접법(Friction Stir Welding)이 활용되고 있다. FSW는 1991년 영국의 TWI에서 개발된 최신 용접법으로 모재를 용융점 아래에서 고상용접시키는 방법으로 용융에 따른 열변형과 흄가스(hume gas)와 스패터(spatter)를 억제시켜 주는 친환경적인 용접법이다. 이러한 마찰교반용접의 기술은 그동안 특허에 따른 로열티가 산업현장에서 사용하는데 문제가 되었으나 특허보호 기간인 20년이 1년정도의 기간밖에 남지 않은 상황에서 그 사용은 날로 증가하리라 본다. 이러한 마찰교반용접부의 결함을 평가하는 방법에는 UT, RT 등이 활용되고 있으나 얇은 박판에서의 결함검출은 용이하지 않다. 이리한 문제점을 해결하기위하여 초음파 가진을 이용한 적외선 열화상 검출 기법을 이용하여 마찰교반용접부의 결함 검출 가능성을 연구하였다. 20kHz의 주파수를 400Watt로 가진시켜 겹치기(lap joint) 마찰교반용접이된 A6061-T6의 용접부에 초음파를 입사하였을 때 발생하는 열을 적외선 열화상 카메라를 이용하여 측정함으로써 마찰교반겹치기 용접부의 결함 검출에 활용하였다. 용접부에 초음파를 입사하였을 때 부분적으로 온도차이가 발생하였고, 그에 따른 열화상을 검출 할 수 있었다. 이러한 열화상과 실제 시험편의 용접부의 강도를 평가하기 위하여 인장시험을 하였다. 그 결과 초음파 적외선 열화상 검출에서 발열부위가 나타난 부분이 인장시험에서 낮은 인장강도를 보였다.

  • PDF

Process Risk Assessment for a Batch Condensation Reaction of Polyester Resin using K-PSR Technique (K-PSR 기법을 활용한 회분식 폴리에스터 축합반응에서의 공정 위험성 평가 연구)

  • Park, Kyung-Min;Lee, Dong-Kyu;Lee, Haakil;Lee, Joon-Man;Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2019
  • Risk assessment and analysis for a medium-to-small sized chemical plant that manufactures a polyester resin by the process of batch-type condensation reaction was conducted using K-PSR technique which is one of the risk assessment methods used to implement the Process Safety Management System (PSM). K-PSR is a risk assessment technique developed by KOSHA to compensate for difficulties caused by the lack of infrastructure of medium-to-small sized chemical plants in the re-evaluation. To apply the K-PSR technique, the entire process of a selected chemical palnt was classified in two review sections, i.e., the condensation reaction process and the dilution/filtration process, and the potential risks of the process about these review sections were identified and classified based on the four guide-words (release, fire.explosion, process trouble, and injury). As the results of the research, refer to recommend of risk rating has been confirmed that non-destructive testing of old facilities and the preparation of LOTO procedures for the electrical equipments are necessary as specific measures to prevent the risk of release and fire.explosion. It was also shown that pressure gauges and thermometers should be installed on the hot-oil supply piping to minimize the process trouble, and exhausting hood should be installed to prevent potential injury.

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries (열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석)

  • Cheong, Hae-Won;Kang, Sung-Ho;Kim, Kiyoul;Cho, Jang-Hyeon;Ryu, Byungtae;Baek, Seung-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

Identification of Salted Opossum Shrimp Using COI-based Restriction Fragment Length Polymorphism (COI 기반 제한효소 절편 길이 다형성(RFLP)을 이용한 새우젓 분석)

  • Park, Ju Hyeon;Moon, Soo Young;Kang, Ji Hye;Jung, Myoung Hwa;Kim, Sang Jo;Choi, Hee Jung
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.66-72
    • /
    • 2021
  • This study developed a species identification method for the salted opossum shrimp of Acetes japonicus, A. chinensis (Korea, China), A. indicus (I, II), and Palaemon gravieri based on PCR-RFLP markers. Genomic DNA was extracted from the salted opossum shrimp. The COI gene was used to amplify 519 base pairs (bp) using specific primers. The amplified products were digested by Acc I and Hinf I, and the DNA fragments were separated by automated electrophoresis for RFLP analysis. When the amplified DNA product (519 bp) was digested with Acc I, A. japonicus, A. chinensis (Korea), and A. indius (II) showed two fragments, whereas a single band of 519 bp was detected in A. chinensis (China) and A. indius (I). Also, in the RFLP patterns digested by Hinf I, A. chinensis (Korea) and A. chinensis (China) showed a single band of 519 bp, while two fragments were observed in A. japonicus and A. indius (I) and four fragments in A. indius (II). The PCR amplicon of P. gravieri was digested by Acc I into 3 bands of 271, 202, and 46 bp and by Hinf I into a single band of 519 bp. Therefore, salted opossum shrimp-specific RFLP markers showing distinct differences between four species and two sub-species by PCR-RFLP analysis. Thus, the PCR-RFLP markers developed in this study are a good method for identifying the six types of salted opossum shrimp.

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.