• Title/Summary/Keyword: 전기철도 급전시스템

Search Result 86, Processing Time 0.029 seconds

Development of Integrated Simulator for AC Traction Power Supply System (윈도우즈 기반의 교류 전기철도 급전시스템 통합 시뮬레이터 개발)

  • Kim, Joo-Rak;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • This paper describes the development of integrated simulator with GUI(Graphic User Interface) for traction power supply system. This simulator consists of a lot of calculation modules such as TPS, train time schedule, line constant, and power supply system analysis. Each module has input and output structure respectively. The algorithms of all modules have confirmed the validity to comparison with field test that is performed on both high speed railway line and conventional line.

Measurement and Analysis of Voltage Drop in Traction Power Supply System (전기철도 급전시스템의 안정화를 위한 전압강하 측정 결과 분석)

  • Kim, Joo-Rak;Lee, Young-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2210-2211
    • /
    • 2011
  • Load capacity varies according to a day of the week in traction power supply system, because time schedule in railway is changed as demand for passengers and freights. Therefore, Voltage drop also varies as load capacity. In Korea railway, Voltage collected from catenary in train is decreased, as load supplied traction power supply system is increased. Therefore, investigation about voltage drop should be performed, before development of countermeasure against voltage drop. The investigation can be performed by simulation or field test. Naturally, field test is more precise than simulation. In addition, field test should be carried out at peak load. This paper presents test and analysis about voltage drop in railway. The test is performed in both a day of the week and weekend. The analysis is figured out comparison load capacity between two days and voltage drop across terminal.

  • PDF

A Study on Power-Quality Improvement in Electric Railway Power Supply System (전기철도 급전시스템에서 전력품질 향상에 관한 연구)

  • Bang, Seong-Won;Lee, Seung-Hyuk;Jung, Hyun-Soo;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.228-230
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator(SVC) on the electric railway power supply system. The purpose of the electric equipment can be summarized as to improve electrical power quality and to maintain the voltage. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation. In this paper, the case studies were performed with the various line length and train position.

  • PDF

Compensation of Voltage Drop Using the SVC in Electric Railway Power Supply System (SVC를 이용한 전기철도 급전시스템에서의 전압강하 보상)

  • Bang, Seong-Won;Jung, Hyun-Soo;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.289-291
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator (SVC) on the electric railway power supply system to compensate for the voltage drop. The high reactance of line and a heavy train load consume a significant amount of the reactive power which results the voltage drop. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation by using PSCAD/EMTDC. In this paper, the case studies were performed with the various line length and train loads.

  • PDF

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

Analysis on the induction effects by electricity feeder station of the electromagnetic induction from high-speed railway system (고속전철 전자유도에 대한 급전소 유도 효과 실측연구)

  • Han, Man-Dae;Choi, Mun-hwan;Lee, Sang-mu;Cho, Pyoung-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.843-846
    • /
    • 2009
  • 경부고속전철의 급전선에 의한 전력유도 대책을 위하여 건설 당시 정보통신부 고시에 의하여 시행되었다. 통신선에 장애를 유발할 수 있는 전자유도 대책을 위해서는 국가 기술기준에 의한 유도전압 한계치가 정해져 있고 현장 대책 상 이 제한치를 초과할 때에 필요한 것이므로 상기 정부 고시의 기술 근거에 의해 유도전압을 계산하여 조치하고 있다. 전기철도시스템에서 지역 구간상의 전력 공급을 위한 일정 거리마다 급전소가 시설되어 있어서 이로부터 전철에 전력이 공급되고 있다. 전철의 유도현상에 의한 유도전압 분포 분석을 위한 전국 구간 유도측정을 수행하여 급전구간에서의 유도전압 특성을 파악하였다. 구간 중심점상에서 낮아지는 전압에 대해 급전소 근접 구간에 이르렀을 때의 전압 상승 특성을 분석하였다. 급전소로부터 귀로되는 전류의 양이 집합됨으로 유도전압이 높아지고 거리가 멀어질수록 전압은 떨어진다. 유도대책을 전압 분석에 있어서와 차폐시설물의 연계 활용 시 이러한 전압의 영향성을 고려할 필요가 있다.

  • PDF

The comparison and investigation of power supply capability according to feeding schemes in AC electric railway system (교류전기철도시스템에서 급전계통 구성에 따른 급전성능 비교검토)

  • Lee, Chang-Mu;Oh, Kwang-Hae;Chang, Sang-Hun;Han, Mun-Seub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1236-1238
    • /
    • 2001
  • The electrified railway has various power supply schemes. Although the identical trains are operated in same condition and the impedance of track are equal, the genealogy impedance of track is changed according to composition method of feeding scheme. So, the collection voltage of train and supplying power from railway substation are greatly unlike. For simulation of collection voltage and power supply according to feeding scheme, using 6-port network analysis proposed previously simulate collection voltage and supply power according to feeding scheme(Parallel Post feeding system, normal feeding system and tie feeding system) and compare and investigate each characteristics.

  • PDF

A Study on Modeling of Life Cycle Cost for Magnetic Levitation Train (자기부상열차 시스템의 수명주기비용 모델링에 관한 연구)

  • Lee, Yun-Seong;Kim, Jin-O;Kim, Hyung-Chul;Jang, Dong-Uk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1076-1080
    • /
    • 2009
  • An analysis of Life Cycle Cost (LCC) is to evaluate the system through the total cost accounting during the total life cycle. Railway system has problem that abundant capital has to be utilized efficiently because railway system is a combined system such as power supply, machines, electric signals. Especially, Magnetic Levitation Train needs high technique and more study about the Life Cycle cost by using the system being developed currently in Korea. Therefore, the Modeling of Life Cycle Cost for Magnetic Levitation Train is proposed considering the tendency of the studies in other countries.

A Study on Electric Circuit Modeling and Analysis for AC Railway System (전기철도 교류급전 시스템의 회로 모델링 및 해석기법 연구)

  • 창상훈;김주락;홍재승;오광해;김정훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.219-228
    • /
    • 2000
  • This paper presents an advanced approach to simulate AC electric railway system in steady-state. The algorithm consists of two parts. One is circuit modeling of elements of electric railway system, the other is an analysis on electric circuit. The modeling procedure has two steps, in the first step, proposed is the modeling method which is considered to be an internal impedance of the autotransformers and mutual impedances between the feeding systems. For the load(locomotives) modeling which is the second step, improved results are obtained as application to the proposed constant power model compared with constant impedance model. In the analysis on electric circuit, a generalized analysis method using the loop equation has been proposed and there is no limit in the number of trains between the ATs. In addition, the computer simulation by the proposed model was practiced. Simulation result seems very reasonable. It is therefore concluded that techniques for the electric circuit modeling and analysis have been established. Accuracy of the techniques will be further investigated.

  • PDF