• Title/Summary/Keyword: 전기유압식(electro-hydraulic)

Search Result 31, Processing Time 0.022 seconds

Development on Governor of electronic oil pressure type for stt:am turbine of thermal power plant (전자유압식 Governor의 개발 :화력발전소증기 turbine에 있어서의 해외논초)

  • 대한전기학회
    • 전기의세계
    • /
    • v.17 no.2
    • /
    • pp.35-37
    • /
    • 1968
  • 증기 Turbine plant의 제어방식은 점점 더 복잡하게 고도화하고 있으며 원심 또는 유압조속기등 Lever와 유압기구의 조합으로 구성된 기계유압식 Governor 대신에 전자유압식 Governor(Electro-Hydraulic Governor, EHG 일반적으로 광의의 의미로는 전자유압식제어장치 Electro-Hydraulic Control System이라함)의 개발에 주력하고 있으며 본보고서는 이에 대한 시험결과를 기술한 것이다. 본보고서는 산업용(자가발전용) 증기 Turbine의 전자유압식 Governor에 관한 것으로서 기계유압식에서의 복잡한 Lever 기구, Relay 장치등 기계부분의 전자유압화와 고압제어유의 채용및 이에 따르는 각부분의 Module화, Solid State화 및 소형 Unit화에 의하여 취급및 보수가 용이한 고성능의 제어장치를 개발하게 되었다. 특히 미국의 GE사에서 이에 대한 개발이 앞서 있으며 현재 100MW까지 약 30대가 실용화되고 있다고 한다. (이글은 일본화력발전지 1968년 1월 제136호에서 발췌한 글이다.)

  • PDF

브러시리스 직류모터 방식 EMDP의 구동을 위한 제어시스템 설계

  • Lee, Hee-Joong;Park, Moon-Su;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 2005
  • In KSLV-I, actuation system for thrust vector control of kick motor was configured as electro-hydraulic servo actuation system and consisted of actuators, hydraulic power supply system, hydraulic power distribution system and control system. In case of hydraulic power supply system, we use EMDP(Electric Motor Driven Pump) to supply hydraulic power. Generally, we use brushed DC motor for EMDP but it is not easy to operate EMDP using brushed DC motor at a high altitude. Hence, we are developing EMDP using brushless DC motor to use at a high altitude. In this study, we will explain control system for BLDC motor to drive hydraulic pump.

  • PDF

A Hydraulic Power Steering System Based on Electro Hydrostatic Actuator (전기 정유압 구동기를 적용한 유압식 동력 조향 시스템)

  • Li, Z.M.;Lee, J.M.;Park, S.H.;Kim, J.S.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.86-94
    • /
    • 2011
  • In this paper, an electro hydraulic power steering system based on electro hydrostatic actuator (EHA) is proposed. A detailed steering model for the proposed electro hydraulic power steering system including mechanical and hydraulic subsystems is established. A conventional electro hydraulic power steering system is also modeled to evaluate the performance of the proposed power steering system such as responsiveness, assist force, command tracking and steering feel by computer simulation. From the computer simulation results, it is found that the proposed power steering system based on EHA has desirable performance.

Static Characteristics of Electro-Hydraulic Spring Return Actuator (전기유압식 스프링복귀 액추에이터 정특성)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

The Speed Control of a Marine Diesel Engine with Electro Hydraulic Governor by using W Transformation Method (w 변환법에 의한 전기 - 유압식 조속기를 가진 박용디젤기관의 속도제어)

  • 강창남;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 1997
  • The propulsion marine diesel engine have been widely applied with a mechanical- hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechani¬cal - hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of Desiel engnie The performance improvement of mechanical - hydraulic governor is required to solve these problems of control system. The electro - hydraulic governor using PID algorithm is provided to compensate the faults of mechanical- hydraulic governor. In this paper, in order to analyze the ship speed control system, the transfer function was converted from the z tansformation to w transformation. The influence of dead time changing by engine speed which induces hunting phenomena was investigated by Nichols chart of w plane. As a method of performance improvement of mechanical hydraulic governor, a Eletro - hydraulic governor shows that fine control results can be obtained through optimal parameter tuning of PID

  • PDF

Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms (GA를 이용한 전기유압식 가변펌프의 압력제어)

  • 안경관;현장환;조용래;오범승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

A Study on the Modeling and Simulation of an Electro-Hydraulic Power Steering system (전기 유압식 동력 조향시스템의 모델링 및 시뮬레이션에 관한 연구)

  • Kim, Ji-Hye;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1008-1013
    • /
    • 2012
  • Electro-hydraulic power steering (EHPS) system is the power-assisted steering which operates the hydraulic pump by BLDC motors for assisting the steering force. EHPS consists of BLDC motor, gear pump, oil-hydraulic circuit and steering system. Since EHPS is a convergence system consisting of electricity and electronic, hydraulic and mechanical system, it is difficult to establish the simulation model. In this paper, the mathematical model of EHPS system components were presented, and the simulations of the multi-domain system were performed by using AMESim. The trial and error of development would be reduced by using this simulation results, and it would be helpful for developing high-quality EHPS.

Transient Characteristic Analysis on the Regenerative Braking System of Fuel-cell Electric Vehicle with Electro-Hydraulic Brake (전기유압식 브레이크를 장착한 연료전지차량의 회생제동 천이구간 특성해석)

  • Choi, Jeong-Hun;Cho, Bae-Kyoon;Park, Jin-Hyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Nowadays, various researches about eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. Since most of these green cars have electric motors, the regenerative energy technology can be used to improve the fuel economy and the energy efficiency of vehicles. The regenerative brake is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into electric energy, which can be either used immediately or stored until needed. This technology plays a significant role in achieving the high energy usage. However, there are some technical problems for controlling the regenerative braking and the electro-hydraulic brake during switching at transient region. In this paper, the performance simulator for fuel-cell vehicle is developed and transient response characteristics of the regenerative braking system are analyzed in the various driving situations. And the hardware-in-the-loop simulation of electro-hydraulic brake is performed to validate the transient characteristics of the regenerative braking system for fuel-cell electric vehicle.

An Experimental Study on Control System Performance of an Electro-Hydraulic Copying Machine (전기 유압식 모방절삭 기계 의 제어성능 에 관한 연구)

  • 윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.104-110
    • /
    • 1984
  • An electro-hydraulic copying system is developed and its performance is experimentally investigated. As compared with a mechanical hydraulic coping system, this system has a basic difference in that; (1) the stylus movement is converted into an electrical signal via a position transducer. (2)the actuator displacement is also measured by a position sensing element, which serves as a feedback signal. Since the system parameters affect the control performance, the response characteristics such as percentage overshoot, rise time, settling time and steady state error are experimentally obtained under variation of these variables. The system parameter include supply pressure, servo amplifier gain and feedback gain. The experimental result shows that the cutting tool follows a stylus input motion to a desirable accuracy. The implication of this result indicates that the developed system can enhance the copying accuracy of the conventionally used mechanical type of hydraulic copying system.