• Title/Summary/Keyword: 전극 전위

Search Result 578, Processing Time 0.029 seconds

Electrochemical Kinetic Assessment of Rose Tissue Immobilized Biosensor for the Determination of Hydrogen Peroxide (과산화수소 정량을 위한 장미조직 함유 바이오센서의 전기화학 속도론적 고찰)

  • Rhyu, Keun-Bae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • Using a chlorosulphonated polyethylene rubber solution for a binder of graphite powder and ferrocene for a mediator, a rose leaf tissue-embedded biosensor was built. Linearity on the Hanes-Woolf plot showed the reduction of the substrate was attained through the catalytic power of the rose peroxidase in the experimental range of electrode potential. Furthermore, 10 or more electrochemical parameters demonstrated that the electrode exerts its sensing ability quantitatively. The foregoing gave the full conviction that rose tissue can be used in place of the currently marketed enzyme for the practical use of enzyme electrode.

The Effects of Tungsten Electrode on Electrochemical Synthesis of Polyaniline (텅스텐 전극이 폴리아닐린의 전기화학적 중합에 미치는 영향)

  • Jung-Kyoon Chon;Byoung Hoon Min
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.885-890
    • /
    • 1994
  • Kinetics of electrochemical polymerization of aniline on a tungsten electrode in acidic aqueous solution was studied by means of cyclic voltammetry and kinetic measurements of anodic oxidation. Aniline molecule appeared to be intially oxidized via two-electron transfer to produce oxidized deprotonated aniline ion, which subsequently undergoes nucleophilic attack to the parent aniline and results in head to tail coupling to yield a dimerized species. But, being contrary to the case of Pt electrode, the propagation of polymerization occured through attack of the monomer by the oxidized aniline monomer to polymer. The growth rate of polyaniline was slow in comparison with the growth on Pt electrode. The degradation products were confirmed to be not p-benzoquinone(BQ) but p-phenylenediamine(p-PDA) by spectrophotometry, which agrees with the fact that oxidation of p-PDA was not observed below 1.0 V.

  • PDF

Anodic Dissolution of Electrodeposited Iron Group Elements in Phthalate Buffer Solution (Phthalate 완충용액에서 전해 석출한 철족 원소의 산화 용해 반응)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.14-20
    • /
    • 2007
  • The anodic dissolution of electrodeposited iron group elements (Fe, Co, Ni) were studied in phthalate buffer solution. The pH dependence of the corrosion potential, the corrosion current and Tafel slope was measured for each element. Based on the electrochemical parameters including Tafel slopes, we proposed the redox mechanism of the corrosion and the passivation. The adsorption of various phthalate species on the electrodeposited iron group elements seemed to be affected the corrosion mechanisms.

하이브리드 증착법에 의한 Ti-DLC 박막 전극의 전기, 전기화학 특성 연구

  • Jo, Yeong-Ju;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.116.1-116.1
    • /
    • 2017
  • 본 연구는 PVD와 CVD를 동시에 사용한 하이브리드 공정시스템을 이용하여 Ti를 도핑한 Diamond-like carbon(DLC) 코팅 전극의 특성 분석에 대한 내용을 다루고 있다. DLC는 높은 경도, 낮은 마찰 계수, 화학적 안정성 등의 좋은 기계적 물성을 가지고 있어 주로 내마모성이 요구되는 분야에 주로 적용되어 왔다. 또한 DLC는 넓은 전위창 및 낮은 백그라운드 전류 등의 전기화학적 특성을 가지고 있어 최근 전극용으로 전도유망한 소재로 주목받고 있지만, 높은 비저항과 낮은 접착력은 여전히 극복해야할 문제로 남아있다. 본 연구에서는 Plasma enhanced chemical vapor deposition (PECVD) 법과 High power impulse magnetron sputtering (HiPIMS) 기법을 동시에 사용하여 Ti/TiC 하지층과 그 위에 Ti-DLC 막을 증착하였고, Ti 함량에 따른 DLC 박막의 특성변화를 살펴보았다. PVD/CVD 하이브리드 증착법에 의한 하지층은 DLC막과 기판사이의 밀착력을 향상시켰고, 기존 PECVD법과 비교하였을 때 하이브리드 증착법은 DLC 박막의 증착률을 크게 증가시켰다. DLC 박막에 소량의 Ti가 들어가면 C-C $sp^2$ 구조가 증가하여 전기적, 전기화학적 특성이 향상되었고, Ti의 함량이 일정 이상 증가하면 TiC의 영향을 받아 전기적, 전기화학적 특성이 나빠지는 것을 알 수 있었다. 본 연구에서는 DLC를 전극으로 활용하기 위해 전기적 및 전기화학적 특성을 향상시키는 연구에 집중하였지만, 산업에 활용하기 위해서 기계적 물성향상과 수명에 관한 추가적인 연구가 이루어 진다면 DLC 전극 분야 발전에 많은 기여를 할 수 있을 것이라 생각한다.

  • PDF

Development of Portable-Type Electrode for the Determination of Highly Concentrated Hydrogen Peroxide (휴대용 고농도 과산화수소 측정 전극의 개발)

  • Lee, Jin Seo;Cui, Gang;Kim, Sang Jin;Cha, Geun Sig;Nam, Hakhyun;Rho, Kyung Lae;Kim, Jin Doo
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.125-129
    • /
    • 1999
  • Portable-type two electrode system for the determination of highly concentrated hydrogen peroxide (10-75%) has been studied. The electrode body was made with teflon rod (length=10 cm, diameter=1.5 cm) to withstand the highly corrosive power of hydrogen peroxide. Glass carbon rod (diameter=3 mm) was used as the working electrode and a carbon cylinder (i.d.=5 mm; o.d.=9 mm) was used as counter electrode. The applied voltage for the determination of $H_2O_2$ was 0.8 V. Diluting the highly concentrated samples taken from the industrial batch to 10% or less, it was possible to make quantitative determinations, while eliminating the interference from the stabilizer contained in the sample and preventing the surface of the electrode from oxidative corrosion. Employing hydrogen peroxide permeable membrane (teflon membrane${\leq}100{\mu}m$) for the electrode system, it was possible to measure the content of $H_2O_2$ in highly concentrated samples directly, quantitatively and reproducibly with no extra dilution step. However, it was necessary to change the internal electrolyte frequently to maintain the analytical performance of the electrode.

  • PDF

A Study on the Effect of Electrolyte Additives on Zn Electrode with Pb3O4 in Zn-AgO Secondary Battery System (Zn-AgO 이차 전지에서 Pb3O4가 첨가된 아연 전극에 미치는 전해질 첨가제의 영향에 관한 연구)

  • Park, Kyung-Wha;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2003
  • Zn electrode was widely used as an anode material in alkaline battery systems in highly concentrated KOH electrolyte, however it was well known that its cycle life is significantly shortened by growth of dendrite due to the high dissolution of $Zn(OH)_2$ and rapid electrochemical reaction. In this study when by the additives such as $Ca(OH)_2$, Citrate, tartrate and Gluconate were added to $40\%$ KOH electrolyte at solution temperature of $25^{\circ}C$ and the amount of $5wt\%\;Pb_3O_4$ was mixed to Zn electrode and then the effect of $Pb_3O_4$ and additives on the electrochemical behavior of Zn electrode was investigated by Potentiodynamic Polarization Curves, Cyclic Voltammetry, Accelerated Life Cycle lest, and SEM image analyses. The addition of $Pb_3O_4$ reduced the corrosion rate of Zn electrode. The corrosion potential of Zn electrode with $Pb_3O_4$ was higher or lower than that of pure Zn electrode however was not influenced practically to the open circuit voltage. And the addition of 4 type additives had an important role in improving both cycle life in accelerated cycle life test and corrosion resistance. Furthermore the additive of Tartrate indicated comparatively a good effect to corrosion resistance as well as charging-discharging property Improvement among those four type additives.

The Crosshole Resistivity Method Using the Mixed Array (혼합배열을 사용하는 시추공간 전기비저항 탐사)

  • Cho In-Ky;Han Sung-Hoon;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.250-256
    • /
    • 2002
  • Resistivity tomography has become an important tool to image underground resistivity distribution. This method has been widely applied to site investigation for engineering and environmental purpose. In resistivity tomography, various electrode arrays can be used and each array has both merits and demerits. For example, the pole-pole array has high signal to noise ratio (S/N ratio), but its resolution is too low. The dipole-dipole array has low S/N ratio, but its resolution is very high. The Pole-dipole may has intermediate Snf ratio and resolution. The modified Pole-dipole array, recently proposed, shows reasonable S/N ratio and resolution, which are comparable to the pole-dipole array. These electrode arrays except the pole-pole array, however, have the problem that the apparent resistivity can diverge at some special electrode Positions. Also, the Pole-Pole array may not reflect the doe resistivity of an anomalous body. In this study, we propose a new electrode array, mixed array, where pole-dipole and modified pole-dipole ways are selectively used with the relative positions of current and potential electrodes. The mixed array has the same level of S/N ratio and resolution as the pole-dipole array and the apparent resistivity does not diverge in the receiver hole. Furthermore, the apparent resistivity using the array can reflect the true resistivity of the anomalous body.

Electrode properties of various carbon anodes containing different sizes and distributions of pores (다양한 기공 크기 및 분포를 갖는 양극 탄소의 전극 특성)

  • 안홍주;오한준;김인기;김세경;임창성;지충수;이재봉;박광규;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.42-49
    • /
    • 2002
  • Differences in electrode properties and in fluorine electrolysis behaviors of various carbon anodes, which were the YBD-like grade carbon, the YBD grade carbon and the P2X grade carbon, containing different pore sizes and distributions were investigated. The evaluations were performed by measuring their mechanical properties, cyclic voltammograms and chronoamperometries in 0.5 M $K_2SO_4$ solution with 1 mM $[[Fe(CN)_6]^\;{3-}/Fe(CN)_6$] $^{4-}$ redox couple and electrochemical behaviours of fluorine electrolysis in molten KF . 2HF electrolyte at $85^{\circ}C$. It was found that the P2X grade carbon anode showed better electrode properties in the cyclic voltammogram and chronoamperometry than the other carbon anodes while the YBD-like grade carbon anode which contained the pore size of 200~300$\mu$m showed superior electrode properties for fluorine electrolysis to the others. These differences in the electrode properties of various carbon anodes seemed to be owing to different sizes and distributions of pores on their surfaces.

Characteristics Analysis of Transient Impedances of Small-sized Ground Electrodes in a Ionization Region of Soil (토양의 이온화영역에서 소규모 접지전극의 과도접지임피던스 특성 분석)

  • Yoo, Yang-Woo;Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.78-84
    • /
    • 2009
  • This paper presents measurement results of transient impedance for small-sized ground electrodes in a discharge region of soil. For a realistic analysis of ionization characteristics near the ground electrode, three types of ground rod installed outdoors and high voltage impulse generator were used for injecting test current. From the analysis of response voltage and current flowing ground electrode to earth, it is verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively in high resistivity soil. As a threshold electric field density for ionization is small in low resistivity soil, the shape of ground electrode rarely contributes to the transient impedance. And, from the experiment result with shape of ground electrode, the rod with needles is more effective to reduce the transient impedance than the plate electrode in the voltage range including with ionization regions of soil.

Electrochemical Characteristics of Ruthenium Oxide Electrode-Organic Electrolyte System (유기전해액에서 루테늄산화물 전극의 전기화학적 특성)

  • Doh, Chil-Hoon;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo;Choi, Sang-Jin;Yug, Gyeong-Chang;Park, Jeong-Sik;Kim, Sang-Gil;Lee, Joo-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.169-173
    • /
    • 2003
  • Electrochemical capacitor made with metal oxide electrode uses rapid and reversible protonation/deprotonation of metal oxide material under the aqueous acidic solution, generally. Electrochemical stability window of aqueous electrolyte-type capacitor is narrow compared to that of organic electrolyte-type capacitor. Electrochemical characteristics of electrochemical capacitor made with metal oxide electrode and lithium or ammonium cation based organic electrolyte were evaluated. Electrochemical capacitor based on $RuO_2$ electrode material and 1M $LiPF_6$ in mixed solvents of EC, DEC, and EMC has anodic and cathodic specific capacitance of 145 and $142F/g-RuO_2{\cdot}nH_2O$, respectively, by using cyclic voltammetry with scan rate of 2mV/sec $g-RuO_2$ in potential range of $2.0\~4.2V(Li|Li^+))$.