• Title/Summary/Keyword: 전과정영향평가

Search Result 182, Processing Time 0.023 seconds

Environmental Impact Assessment of the Carbody of a Electric Motor Unit(EMU) Using Simplified Life Cycle Assessment(S-LCA) (간략화 전과정 평가(S-LCA) 기법을 이용한 전동차 구체의 환경성 평가)

  • Lee Jae-Young;Mok Jai-Kyun;Jeong In-Tae;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.520-524
    • /
    • 2005
  • It is consequential to reduce the environmental impact of a product for sustainable development in 21st Century. In the field of transportation, especially, the technological market concerned about reduction and assessment of greenhouse gas emission is expected to be extended. The LCA gas been esteemed and utilized as a realistic alternative greenhouse gas emission is expected to be extended. The LCA has been esteemed and utilized as a realistic alternative to improve the environment by the assessment of environmental impacts. In this study, simplified life cycle assessment(S-LCA), was performed to analyze the environmental impacts quantitatively, which were produced through the life cycle of a electric motor unit(EMU). The object of the present work is rth investigate main parameters of environmental impacts and to establish the plans to improve the environment impact of EMU. As a result of quantitative assessment for environmental impact and manufacturing, the EMU carbody made of SUS showed acidification(AD) and marine water aquatic ecotoxicity(MAET) the most, while that made of Mild showed high impact of global warning(GW) and abiotic resources depletion(ARD). For the SUS EMU, the high AD and MAET impact is occurred by the discharged pollutants during acid-washing process. Also, high value of GW and ARD for Mild EMU is resulted from the consumption of iron ore, coal and crude oil during manufacturing. Therefore, the environment impact of carbody would be decreased by enhancing of energy efficiency and the lightening the weight of it.

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites (Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

A Study on the Environment Assessment of Waste Polyethylene Terephthalate (PET) by LCA (LCA기법을 이용한 PET의 환경성평가에 관한 연구)

  • Park, Chan-Hyuk;Chung, Jae-Chun;Choi, Suk-Soon;Kim, Sung-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • In this study, life cycle assessment(LCA) technique was employed to evaluate the environmental impact of material recycling of polyethylene terephthalate(PET) bottle. Life cycle inventory was established based on the data collected from recycling companies in Korea. Simapro 5.0 LCA software and Eco-indicator 95 index were used for the analysis. The biggest impact by the material recycling of PET bottle on the environmental category was the global warming. It is because melting and production of the recycled PET product consume a significant amount of electricity and energy. In the environmental pollution discharge, $CO_2$ emission was the highest, followed by NOx. This is probably due to the use of diesel and gasoline in the consumption of electricity and transportation. All the environmental impact showed (-) value except the ozone layer depletion, which means that the material recycling of PET bottle is environmentally fair. The use of recycled PET product greatly reduced the environmental impact.

  • PDF

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

The Estimation for Environmental Impact of Composite Bodyshell Using Life Cycle Assessment (LCA) (전과정 평가기법을 통한 복합재 차체의 환경영향 예측)

  • Lee, Sang-Jin;Cho, Se-Hyun;Kim, Jung-Suk;Han, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1634-1642
    • /
    • 2009
  • 본 연구는 자체재질로 복합재 적용한 경우를 기존의 금속구조 차체와 25년 운행기간을 기준으로 환경영향을 비교평가하였다. 본 연구는 알루미늄, 스틸, 하이브리드 복합재, 전체 복합재 인 종 4종의 자체를 고려하였다 네가지 차체 시나리오에 대해 원자재 생산, 차체 제작, 25년 사용 단계, 폐기까지의 환경영향에 대해 LCA 기법을 사용하여 평가하였다. 모든 시나리오 경우, 사용단계가 환경영향 카테고리를 좌우했다. 전제 복합재 시나리오가 매립 또는 소각에 대한 가장 낮은 영향을 주었다. 복합재 차체는 금속자제와 비교해 환경영향 측면에서 30$\sim$50 % 개선효과를 보였다.

  • PDF

Study on the Environmental Quality Assessment of River Revetment Technique by Life-Cycle-Assessment (전과정 평가에 의한 하천 호안 공법의 환경성 평가에 관한 연구)

  • Kim, Kook-Il;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.485-494
    • /
    • 2007
  • This study was performed to evaluate the environmental qualities of the revetment construction methods and the river-facility materials using Life-Cycle-Assessment(LCA) for the nature-friendly design of close-to-nature river, The investigation results on the environmental qualities of energy and materials used to the close-to-nature river plan showed that the environmental impacts per unit weight increased in the order of gasoline > diesel > cement > wood. The environmental impacts per unit area of revetment construction method exhibited that the environmental loadings increased in the order of gabion > revetment > cribwork. In addition, it was observed that the environmental impact was reduced by improving the materials of zinc-galvanized wire. The model basin investigated in this study was the $0.3km^2$ area of river improvement works in Kyung stream, which is a tributary to the Seomjin river and the second regional stream. The research was conducted based on the 30years by life expectancy of artificial facilities. For the comparisons of revetment techniques with respect to the environmental qualities, the method resulted in the highest environmental loadings. The method using ready-mixed concrete ranked second in the environmental loadings of revetment techniques. The present results of this study are expected to play a beneficial role in the nature-friendly design of close-to-nature river by quantitatively identifying the environmental quality of total procedures (i.e., combination of techniques, selection of river-facility materials, maintenance of river-facility) applied to close-to-nature river plan.

Application of the Life Cycle Assessment Methodology to Rice Cultivation in Relation to Fertilization (시비방법별 벼 재배에 따른 전과정평가 방법을 적용한 환경영향 평가)

  • Shin, Joung-Du;Lim, Dong-Kyu;Kim, Gun-Yeob;Park, Mun-Hee;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • The suitability of the life Cycle Assessment (LCA) methodology to analyze the environmental impact of rice cultivation with different fertilizing systems is investigated. The arst part of an LCA is an inventory of parameters used and emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment the inventory data were analyzed and aggregated in order to finally get one index representing the total environmental burden. For the life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact assessment method. The resulting index is called Eco-indicator value. The higher the Eco-indicator value the stronger is the total environmental impact of an analyzed fertilizing system. The rice field experiment conducted in middle parts of korea was chosen as an example for the life cycle impact analysis. In this experiment the treatments were consisted of none fertilizer plot (NF), standard fertilizer plot (SF) applied chemical fertilizers based on soil chemical analysis before rice transplanting, and efflux fertilized plot (EF) applied with pig wastes fermented as the same rates of SF plot as basis on total nitrogen content. The obtained Eco-indicator values were clearly different among the treatments in the rice trial. The total Eco-indicator values for SF and EF have been observed 58 and 38% relative to the NF, respectively. For all the treatments the environmental effects of eutrophication contributed most to the total Eco-indicator value. The results appeared that the LCA methodology is basically suitable to assess the environmental impact associated with different fertilizer applications for rice cultivation. A comparative analysis of the fertilizing system's contribution to global warming and eutrophication is possible.

Life Cycle Environmental Impacts Benefits Analysis of Remanufactured Injector Considering the Avoided Effect (회피효과를 고려한 인젝터 재제조의 전과정 환경영향 효익 분석)

  • Nam Seok Kim;Young Woon Kim;Yong Woo Hwang;Hong-Yoon Kang;Young Ho Kim
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • Remanufacturing re-commercializes a used product to achieve an equal or higher performance level than the original product by disassembling, cleaning, inspecting, repairing, reconditioning, and reassembling the used product. The remanufacturing industry is a key industry necessary to realize carbon neutrality by 2050. This study uses life cycle assessment to analyze the resource reduction and greenhouse gas reduction effects with and without considering the avoided effect for an injector, which is an automobile part that is actively being remanufactured. The results of this study showed that the resource reduction effect and greenhouse gas reduction effect induced by injector remanufacturing were reduced by 95.30% and 93.88%, respectively, based on one unit without considering the avoided effect. However, when considering the avoided effect, which in this case is the environmental impact of not disposing of the used injector and not having to use natural resources to manufacture a new injector because the used injector was reused during remanufacturing, the resource reduction effect and greenhouse gas reduction effect were 190.91% and 188.33%, respectively. The results of this study are expected to be used in the future to evaluate the amount of environmental impact reduction while considering the avoided effect during remanufacturing and to help develop research methodology for remanufacturing.

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.