• Title/Summary/Keyword: 전공학과

Search Result 2,212, Processing Time 0.027 seconds

Movie Revies Sentiment Analysis Considering the Order in which Sentiment Words Appear (감성 단어 등장 순서를 고려한 영화 리뷰 감성 분석)

  • Kim, Hong-Jin;Kim, Dam-Rin;Kim, Bo-Eun;Oh, Shin-Hyeok;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.313-316
    • /
    • 2020
  • 감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.

  • PDF

Design of MBTI Job Recommendation Algorithm Based on Deep Learning (딥러닝 기반의 MBTI 직업 추천 알고리즘 설계)

  • June-Gyeom Kim;Young-Bok Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.13-15
    • /
    • 2023
  • 본 논문에서는 성격, 성향을 근거로 사람의 성향에 따른 직업 및 전공에 대한 만족도를 분류한 데이터셋을 구축하여 사전에 사용자의 성향을 파악하여 직업을 추천하는 알고리즘을 제안한다. 성격유형검사 뿐만이 아닌 최근 게시한 SNS 텍스트를 사전에 학습한 데이터셋에 적용해 성격유형 결과의 정확도를 상승시키고자 한다. 사전에 생성한 데이터셋 외에 대상자가 작성한 정보(직업, 전공, 직엄 및 전공에 대한 만족도)로 연합학습을 진행하여 데이터셋의 정확도를 향상시키고자 한다. 모델의 학습 및 분류의 정확도 향상을 위해 SVM, NB, KNN, SDG 알고리즘들을 비교하였고 각각 67%, 21%, 28%, 69%의 정확도를 도출하였다. 데이터 셋은 캐글에서 제공받았다.

  • PDF