• Title/Summary/Keyword: 적합도 분석

Search Result 13,663, Processing Time 0.045 seconds

Rainfall Interception by and Quantitative Models for Urban Landscape Trees - For Seven Native Species - (도시조경수의 우수차집 효과와 계량모델 - 7개 향토수종을 대상으로 -)

  • Park, Hye-Mi;Jo, Hyun-Kil;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.30-40
    • /
    • 2021
  • This study developed quantitative models to estimate the rainfall interception by seven native landscape tree species based on throughfall measurements. The tree species considered in this study were Abies holophylla, Acer palmatum, Ginkgo biloba, Pinus densiflora, Pinus koraiensis, Prunus yedoensis, and Zelkova serrata, which are frequently planted in the Korea. Among these species, 35.8% of the annual precipitation was intercepted by P. koraiensis, 34.1% by A. holophylla, 31.0% by Z. serrata, 27.6% by P. densiflora, 26.9% by G. biloba, 18.6% by A. palmatum, and 18.4% by P. yedoensis. All the quantitative models showed high fitness with r2 values of 0.90-0.99. The annual rainfall interception from a tree with DBH of 20 cm were greatest with Z. serrata (5.1 m3/yr), followed by P. koraiensis (4.1 m3/yr), A. holophylla (3.1 m3/yr), G. biloba (2.8 m3/yr), P. densiflora (2.1 m3/yr), P. yedoensis (1.9 m3/yr), and A. palmatum (1.8 m3/yr) in order. Thus, evergreen tree species or those with a relatively high crown density were more effective in intercepting rainfall. In particular, the annual rainfall interception by Z. serrata was the greatest because its crown area, volume, and density were higher than those of the other species. This study pioneers in quantifying annual rainfall interception for landscape tree species in Korea. The study results can be useful for evaluating rainfall interception by landscape trees in urban greenspace design for governments and corporations.

Breeding Status and Management System Improvement of Pseudemys concinna and Mauremys sinensis Designated as Invasive Alien Turtles in South Korea (법적지정 생태계교란생물의 사육 현황과 관리 개선 방안 - 리버쿠터와 중국줄무늬목거북을 중심으로)

  • Kim, Philjae;Yeun, Sujung;An, Hyeonju;Kim, Su Hwan;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.388-395
    • /
    • 2020
  • Exotic species have been imported for economic purposes, but more recently, an increasing number of animals are imported as pets. With the increasing popularity of two species of turtles, Mauremys sinensis and Pseudemys concinna, the number of pet turtle owners has gradually increased since 2014. The number of turtles increased by 180 in 2017 and 281 in 2019. However, these turtle species have been abandoned to nature, owing to their long lifespans and the changes in conditions of pet owners. The two turtle species have been designated as invasive alien species (AIS) in Korea considering their ecological risks, and the Biological Diversity Act prohibits their release. The owners of Mauremys sinensis and Pseudemys concinna are required to submit the "Application for Approval of Breeding and Grace for AIS" document. In this study, the breeding conditions for the two turtle species were investigated by analyzing the information in the submitted applications for six months (e.g., the suitability of breeding facilities, number of turtles, breeding period, type of pet adoption, and local district of pet owner). A total of 614 cases were analyzed. Because only 58% of breeders provided suitable breeding conditions, breeding information and responsible pet ownership training should be offered to prevent abandonment in natural ecosystems. In addition, continuous monitoring is necessary to prepare for potential problems caused by the lack of information in many applications and the one-off licensing policy.

Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks (안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석)

  • Yun, Min;Na, Hyoung-Jun;Lee, Mun-Kyu;Park, Kun-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.3-16
    • /
    • 2008
  • A Wireless Sensor Network (WSN for short) is a wireless network consisting of distributed small devices which are called sensor nodes or motes. Recently, there has been an extensive research on WSN and also on its security. For secure storage and secure transmission of the sensed information, sensor nodes should be equipped with cryptographic algorithms. Moreover, these algorithms should be efficiently implemented since sensor nodes are highly resource-constrained devices. There are already some existing algorithms applicable to sensor nodes, including public key ciphers such as TinyECC and standard block ciphers such as AES. Stream ciphers, however, are still to be analyzed, since they were only recently standardized in the eSTREAM project. In this paper, we implement over the MicaZ platform nine software-based stream ciphers out of the ten in the second and final phases of the eSTREAM project, and we evaluate their performance. Especially, we apply several optimization techniques to six ciphers including SOSEMANUK, Salsa20 and Rabbit, which have survived after the final phase of the eSTREAM project. We also present the implementation results of hardware-oriented stream ciphers and AES-CFB fur reference. According to our experiment, the encryption speeds of these software-based stream ciphers are in the range of 31-406Kbps, thus most of these ciphers are fairly acceptable fur sensor nodes. In particular, the survivors, SOSEMANUK, Salsa20 and Rabbit, show the throughputs of 406Kbps, 176Kbps and 121Kbps using 70KB, 14KB and 22KB of ROM and 2811B, 799B and 755B of RAM, respectively. From the viewpoint of encryption speed, the performances of these ciphers are much better than that of the software-based AES, which shows the speed of 106Kbps.

The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University (대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • In 2020, civilized society's overall lifestyle showed a distinct change from consumable analog media, such as paper, to digital media with the increased penetration of cloud computing, and from wired media to wireless media. Based on these social changes, this work examines whether the use of computer media in the field of landscape architecture is appropriately applied. This study will give directions for new computer media classes in landscape architectural education in the 4th Industrial Revolution era. Landscape architecture is a field that directly proposes the realization of a positive lifestyle and the creation of a living environment and is closely connected with social change. However, there is no clear evidence that landscape architectural education is making any visible change, while the digital infrastructure of the 4th Industrial Revolution, such as Artificial Intelligence (AI), Big Data, autonomous vehicles, cloud networks, and the Internet of Things, is changing the contemporary society in terms of technology, culture, and economy among other aspects. Therefore, it is necessary to review the current state of the use of computer technology and media in landscape architectural education, and also to examine the alternative direction of the curriculum for the new digital era. First, the basis for discussion was made by studying the trends of computational design in modern landscape architecture. Next, the changes and current status of computer media classes in domestic and overseas landscape education were analyzed based on prior research and curriculum. As a result, the number and the types of computer media classes increased significantly between the study in 1994 and the current situation in 2020 in the foreign landscape department, whereas there were no obvious changes in the domestic landscape department. This shows that the domestic landscape education is passively coping with the changes in the digital era. Lastly, based on the discussions, this study examined alternatives to the new curriculum that landscape architecture department should pursue in a new degital world.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

The Development and Application of the Officetel Price Index in Seoul Based on Transaction Data (실거래가를 이용한 서울시 오피스텔 가격지수 산정에 관한 연구)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.33-45
    • /
    • 2021
  • Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

The Relationship between Perceived Importance of Space and Users' Satisfaction (치유의 숲 산림명상공간 인자의 중요도와 만족도)

  • Kyung-Mi Jung;Won-Sop Shin
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • Although many studies have been conducted on techniques and effects that can be applied to forest meditation in domestic forest healing meditation research, there has been little research on the space where forest meditation takes place. Nevertheless, a meditation space is not just a place concept but a forest environment element responsible for the healing function of a forest, i.e., a place containing healing factors, and can be an essential clue to the healing mechanism. Therefore, to determine whether a healing forest meditation space is suitable for meditation, this study selected the attribute items of the meditation space using the Delphi expert survey and then surveyed the user satisfaction of the healing forest meditation space using the IPA (Importance Performance Analysis) technique. The survey was conducted from August to November 2022, targeting 315 adults who used the forest meditation space at the National Center for Forest Therapy, the Saneum Healing Forest, and the Jathyanggi Pureunsup Arboretum in Gyeonggi Province. The result of the IPA analysis showed the average satisfaction with the forest meditation space was relatively high at 4.33 points on a 5-point Likert scale (4.33 points for the National Center for Forest Therapy, 4.34 points for the Saneum Healing Forest, and 4.37 points for the Jathyanggi Pureunsup Arboretum), indicating that the three healing forest meditation spaces were suitable for forest meditation. Satisfaction with the "Sounds of nature" was high in all three forests. On the other hand, all three forests showed a relatively low satisfaction with "Quietness," indicating it to be a priority problem to be addressed. Also, an open-ended questionnaire survey showed that the mediation space's natural elements, such as natural sounds, scenery, air, forest spaces, and scents, had a higher positive impact on meditation satisfaction than artificial elements, such as facilities. Therefore, it is essential to secure sound resources such as the sound of water and birds around the meditation space, and it is also necessary to consider ways to create a meditation forest in an independent area to avoid encounters with visitors and allow only participants in the forest healing meditation program to enter to increase satisfaction with forest meditation.

Characteristics of Blood Mixed Cement in Percutaneous Vertebroplasty (경피적 척추 성형술에서 혈액 혼합 시멘트의 특성)

  • Seo, Jin-Hyeok;Woo, Young-Ha;Jeong, Ju-Seon;Kim, Do-Hun;Kim, Ok-Gul;Lee, Sang-Wook;Park, Chan-Ho
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.435-439
    • /
    • 2019
  • Purpose: This study evaluated the efficacy of blood mixed cement for osteoporotic vertebral compression fractures in reducing the complications of percutaneous vertebroplasty using conventional cement. Materials and Methods: This study was performed retrospectively in 80 patients, from January 2016 to January 2017. Porous cement was formed by mixing 2, 4, and 6 ml of blood with 20 g of cement used previously. A tube with a diameter and length of 2.8 mm and 215 mm, respectively, was used and the polymerization temperature, setting time, and optimal passing-time were measured and compared with those using only conventional cement. Radiologically, the results were evaluated and compared. Results: The polymerization temperature was 70.3℃, 55.3℃, 52.7℃, and 45.5℃ in the conventional cement (R), 2 ml (B2), 4 ml (B4), and 6 ml (B6), respectively, and the corresponding setting time decreased from 960 seconds (R) to 558 seconds (B2), 533 seconds (B4), and 500 seconds (B6). The optimal passing-time was 45 seconds (B2), 60 seconds (B4), and 78 seconds (B6) at 73 seconds (R), respectively and as the amount of blood increased, it was similar to the cement passing-time. The radiological results showed that the height restoration rates and the vertebral subsidence rates similar among the groups. Two cases of adjacent vertebral compression fractures in the R group and one in the B2 and B4 groups were encountered, and the leakage rate of the cement was approximately two times higher than that in the conventional cement group. Conclusion: In conventional percutaneous vertebroplasty, the procedure of using autologous blood with cement decreased the polymerization temperature, reduced the setting time, and the incidence of cement leakage was low. These properties may contribute to more favorable mechanical properties that can reduce the complications compared to conventional cements alone.

Comparative and Feasibility Evaluation of Detection Ability of Relative Dosimeters using CsPbI2Br and CsPbIBr2 Materials in Brachytherapy QA (근접방사선치료 QA에서 CsPbI2Br과 CsPbIBr2를 이용한 상대 선량계들의 검출 능력 비교 및 적용가능성 평가)

  • Seung-Woo Yang;Sung-Kwang Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • High dose rate brachytherapy is a cancer treatment that intensively irradiates radiation to tumors by inserting isotopes with high dose rates into the body. For such a treatment, it is necessary to deliver an accurate dose to the tumor tissue through an accurate treatment plan while delivering only a minimum dose to the normal tissue. Therefore, it is very important to check the location accuracy of the source through accurate Quality Assurance (QA) in clinical practice. However, since the source position is determined using a ruler, automatic radiographer, video monitor, etc. in clinical practice, it yields inaccurate results. In this study, a semiconductor dosimeter using CsPbI2Br and CsPbIBr2 was fabricated. And, in order to analyze whether it is more suitable for the relative QA dosimeter for brachytherapy device among the two materials, the radiation detection ability of each was compared and evaluated. In order to evaluate the radiation detection ability in brachytherapy, the reproducibility and linearity of the two materials were evaluated in 192IR. In the reproducibility evaluation, CsPbI2Br presented a Relative Standard Deviatio(RSD) of 0.98% and CsPbIBr2 presented an RSD of 3.45%. In the linearity evaluation, the coefficient of determination (R2) of CsPbI2Br was presented as 0.9998, and the R2 of CsPbIBr2 was presented as 0.9994. As a result of the evaluation, it was found that CsPbI2Br was more stable in radiation detection while satisfying the evaluation criteria in the dosimeter manufactured in this experiment. Therefore, CsPbI2Br material is suitable for application as a relative dosimeter for radiation detection in brachytherapy devices.