• Title/Summary/Keyword: 적층 각도

Search Result 490, Processing Time 0.029 seconds

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method (복합재/AISI4340 이중구조 후육실린더의 구조적 거동 및 최적화)

  • Lee, Kyeong-Kyoo;Kim, Wie-Dae
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2011
  • To increase the performance of thick-walled cylinders recently their length is continually enlarged. For that reason it is important to reduce weight of the thick-walled cylinders. In this paper the FE models to predict and estimate effects on the composite tapes were created with MSC.Nastran/Patran v.2005. First of all a autofrettage method was applied to the 2D model of the AISI4340 cylinder reduced the thick. And then the comparison of the numerical results with analysis results showed and verified by using T300/5208, IM7/PETI5, IM7/8552 tapes. Those are predicted to the effects of the angle of the composite tapes and elastic modulus according to the composite properties.

Analysis Study on the Damage of Crack Happening with the Bending at CFRP Plate due to Stacking Angle (적층각도에 따른 CFRP 평판에서의 굽힘으로 발생한 크랙 파손에 관한 해석적 연구)

  • Hwang, Gue-wan;Cho, Jae-ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.185-190
    • /
    • 2017
  • This study investigates the bending stress, shear stress and deformation energy happening at the inner fiber structure when the bending moment is applied to he specimen with flat shape composed of carbon fiber. As CFRP is composed of innumerable fibers with multi-axes, the stress under bending condition can be effectively distributed. Theses stresses is shown to increase again at the starting point as this angle of $60^{\circ}$. Therefore, the condition at the stacking angle of $60^{\circ}$ is seen to become most adequate under the state where the bending stress happens. On the basis of this study result, the damage property by the bending at the plate due to stacking angle was examined through the analytic approach. it is thought that this study can be devoted to the safe design for damage prevention and durabilty improvement. Also, the esthetic sense can be shown as the designed factor of shape with flat plate is grafted onto the convergence technique.

Convergence Study on Composite Material of Unidirectional CFRP and SM 45C Sandwich Type that Differs in Stacking Angle (적층각도가 다른 단방향 CFRP와 SM45C샌드위치형 복합재료에 관한 융합적 연구)

  • Park, Jae-Woong;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.231-236
    • /
    • 2017
  • In this study, the inhomogeneous material composed of CFRP(carbon fiber reinforced plastic) and structural metal of SM45C is used for the light material. The finite element analysis on the basis of compact tension test was carried out by using the composite material for sandwich type bonded with the unidirectional CFRP that differs in fiber stacking angle at both sides with the core of SM 45C. CT test is the representative method to confirm the fracture behaviour due to crack in material under the load. The effect on crack and hole must be investigated in order to apply inhomogeneous material to mechanical structure. As the result of this study, the fracture behaviour by CT test of the composite material for sandwich was studied by simulation analysis. The sandwich composite of unidirectional CFRP with the stacking angle of [0/60/-60/0] has the superior strength and the maximum equivalent stress of about 182GPa.Also, the esthetic sense can be shown as the designed factor of shape with composite material is grafted onto the convergence technique.

Thermal Management on 3D Stacked IC (3차원 적층 반도체에서의 열관리)

  • Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.5-9
    • /
    • 2015
  • Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.

Reliability Analysis of GFRP Laminated Composite Cylindrical Shells (GFRP적층복합재료관의 신뢰성 해석)

  • 조효남;이승재
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.117-125
    • /
    • 1993
  • In general, the strength and stiffness of laminated composite cylindrical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In this paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cylindrical shells are investigated based on the proposed strength and buckling limit state models. As these factors have various and complicated effects on the strength and buckling reliabilities of GFRP laminated cylindrical shells, the results should be incorporated into the design formula such that optimum design technique and design code which provide uniform consistent reliability for balanced design in practice

  • PDF

Stability of Cantilevered Laminated Composite Structures with Open Channel Section by Geometrical Shape Variations (채널단면의 기하학적 형상변화에 따른 캔틸레버 적층구조물의 안정성 연구)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.169-175
    • /
    • 2004
  • In this paper, the stability of cantilever composite laminated structures with open channel section is studied. This paper deals with the buckling behavior under the variation of the geometrical shape (length ratio, crank angle in the open channel section), the fiber reinforced angle, and so on in order to offer a effective and reliable design data. Also, sensitive analyses are carried out on the stability by the interaction of design factors. Based on this fact, the proper channel section and lamination scheme of composite material cantilever structures are considered in the engineering aspect.

Design of optimal fiber angles in the laminated composite fan blades (적층 복합재 팬-블레이드의 적층각도 최적화 설계)

  • Jeong, Jae-Yeon;Jo, Yeong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator (로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석)

  • Lee, Sun-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, the thermal insulator structure of a real rocket which is fabricated in a way that laminated composite rings are connected in series is analyzed using 3-dimensional axisymmetric finite element models. Simulation of cowl zone using a real operating conditions provides that the stress distribution in the laminated composite ring is largely influenced by ply-angles, axial dimensions, and boundary conditions. Notably the plylift that is the precursor to the wedge-out occurs in the ring-to-ring bonding region. It is hypothesized that after the plylift the wedge is dropped out due to the shear stresses in the ply-angle direction and axial compressive stresses.

Effect of Fiber Orientation Angle and Property of Metal Laminate on Impact Behaviors of Fiber Metal Laminates (섬유의 적층각과 금속판의 특성에 따른 섬유 금속 적층판의 충격 손상 거동)

  • Nam, Hyun-Wook;Jung, Sung-Wook;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.372-380
    • /
    • 2003
  • Impact tests were conducted to study the effect of angle ply and metal laminate on impact damage characteristics of Fiber Metal laminates (FML). Impact tests were conducted using drop weight impact machine and damage behavior were analyzed by comparing with load-displacement curve and surface observation and microscopic observation of cross sections. The effect of angle ply on impact characteristics of FML are influenced by property of metal laminate. i.e., when the metal laminate is not enough to strong to prevent fiber debonding, Angle ply FML is superior to singly oriented ply (SOP) FML because angle ply enhance the stiffness by fiber supports and prevent (rack propagation. However, when the metal laminate is enough to strong to prevent fiber debonding, SOP FML is superior to Angle ply FML because the fiber of lower ply in Angle ply FML are more stressed than that of SOP FML.