• Title/Summary/Keyword: 적층조형

Search Result 96, Processing Time 0.025 seconds

Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process (가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예)

  • 이상호;김태화;안동규;양동열;채희창;문영복;신보성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.763-766
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stackin, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain RP apparatus. The objective of this study is to develop software for automatic generation of unit shape part (USP) for a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material (VLM-S). In order to examine the applicability of the developed software to VLM-S, USP's of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

Development of Surface Finishing Methodology for the Laminated Pattern Removal of VLM-ST Parts (VLM-ST 시작품의 적층무늬 제거를 위한 표면처리 방법론 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Song Min-Sup;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • A new effective thick-layered RP process, Transfer-type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. VLM-ST has the innate advantages by virtue of its working principle: high building speed, low cost for introduction and maintenance of VLM-ST apparatus, little staircase surface irregularities of parts. Despite these advantages in VLM-ST, the surface roughness of VLM-ST parts is still inadequate to be used as RP master patterns for rapid tooling (RT). This paper describes the systematic and effective methodology to remove the laminated pattern and improve the surface roughness for VLM-ST parts. From the results of surface finishing of VLM-ST parts, it can be seen that the laminated pattern is completely removed and the surface characteristics such as surface roughness, surface hardness, and paintability are improved.

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

StereoLithography의 조형정보 생성에 관한 연구

  • 홍삼열;김준안;김인훈;양남열;이원정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.440-444
    • /
    • 1995
  • StereoLithography는 3차원 CAD로 작성된 모델데이타를 이용하여입체조형 실물을 빠르게 제작 하는 Rapid Prototype 기술의 한 방식으로서, 감광성 수지를 자외선 Laser 광에 의해 선택적으 로 경회시켜 원하는 한 단면형상을 이룬후 적층하는 반복작업에 의해 입체 형상을 조형하는 기법 이다. Rapid Prototype 시스템은 제품개발기간 단축과 설계완성도를 높이는 목적으로 최근 산업계에서 그 활용도가 점차 증가하는 추세에 있으며, 3차원 CAD 시스템과 함께 제품개발 체제를 통합화하고 Concurrent Engineering의 실현을 위한 주요한 Tool로써 자리를 잡아가고 있다.

  • PDF

Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling (압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1273-1281
    • /
    • 2014
  • Tissue engineering is an emerging research field that has the potential to restore, regenerate and repair damaged bone tissue and organs. Tricalcium phosphate and hydroxyapatite biomaterials-based calcium phosphate are excellent materials that have both osteoconduction and biocompatibility for bone tissue regeneration. In this study, solution structures were successfully fabricated using a fused deposition modeling system based on deposition and heating devices. The morphology characteristics of the bioceramic scaffolds sintered at a temperature of $1,300^{\circ}C$ were analyzed by scanning electron microscopy. The effects of various blended TCP/HA ratio on the microstructure and shrinkage were studied. The mechanical properties of the scaffolds were measured using a compression testing machine from stress-strain curves on the crosshead velocity of 1 mm/min. The fabricated scaffolds were evaluated by cell proliferation tests of MG-63 cells. The results of this study suggest that the blended TCP(75 wt%)/HA(25 wt%) scaffold is an appropriate scaffold for bone tissue regeneration.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.

Development of Sheet Deposition Type Rapid Prototyping System Minimizing Post Processing (후처리를 최소화하는 판재적층방식 쾌속조형기의 개발)

  • Cho, In-Haeng;Lee, Kun-Woo;Song, Yong-Ak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.210-218
    • /
    • 1999
  • Sheet deposition type rapid prototyping system have many advantages : high build speed, low operating cost, large part size, no phase change, no need for support generation, and forth. However, those sheet deposition type rapid prototyping system require an additional post processing to remove excessive material attached to the part. This post processing is time consuming and labor intensive. Moreover, it is difficult for those system to fabricate parts with hollow cores and internal cavities. A new sheet deposition type rapid prototyping system that minimizes the post processing is proposed. The proposed system automatically removes excessive material in a peeling-off process between two cutting processes. In this way, the proposed system can reduce the post-processing time and cost as well as the limitation of the feasible geometric shapes in the conventional sheet deposition system.

  • PDF

Improvement in Dimensional Accuracy of Transfer-type for Variable Lamination Manufacturing using Expandable Polystyrene Foam (VLM-ST의 형상정밀도 향상에 관한 연구)

  • 최홍석;이상호;안동규;양동열;문영복;박두섭;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1047-1050
    • /
    • 1997
  • Rapid Prototyping(RP) is an efficient method for rapid design verification and trial manufacturing. In order to improve their unique characteristics according to the working principles. Variable Lamination Manufacturing process and corresponding CAD/CAM system is developed. The objective of this study is to improve dimensional accuracy of VLM-ST process, and it can be done by offset for cutting error correction, cutting path correction for sharp edge and reference shape generation. To verify the proposed algorithms, they applied to three-dimensional shapes, such as spanner and mechanical part.

  • PDF