• Title/Summary/Keyword: 적응 학습 제어

Search Result 169, Processing Time 0.021 seconds

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

지식학습 능력을 갖는 전문가 시스템

  • 김호용
    • 전기의세계
    • /
    • v.39 no.8
    • /
    • pp.14-24
    • /
    • 1990
  • 전문가 시스템 개발과정에서 완전한 경험적 규칙들을 얻는 것은 극히 어려운 작업이다. 전문가들이 확고한 경험적 규칙들을 얻기위해서는 오랜 시간이 걸리며, 그 얻어진 지식조차 확신할 수 없다. 또한 같은 분야 지식도 전문가들 사이에서 큰 차이를 보일 수 있다. 이러한 상황에서 전문가 시스템이 보다 완전한 지식베이스를 얻어, 주어진 영역에서 기존의 고도 전문가 수준의 전문성을 갖는 완전한 전문가로 활약하기 위해서는 지식 배제, 둘째 기존의 경험적 탐색 공간은 물론 보다 다양한 문제 해결 전략이 가능한 심층적 탐색공간을 제공하여 그로부터 새로운 문제 해결 지식을 학습하는 자기 학습기능이 필요하다. 본지에서는 이러한 자기학습 기능을 갖는 전문가 시스템의 알고리즘을 검토하였다. 그리고 끝으로 전력계통에 대한 적용예로서 전압제어 전문가 시스템을 설명하였다. 아직 전문가 시스템의 자기학습 기능의 구현은 초보적 연구에 머물고 있으며, 그들의 학습 능력조차 낮은 수준에 불과하다. 그러나 전문가 시스템 연구자들은 기존 전문가 시스템의 문제점과 그 적응능력의 중요성을 인식하고 있기 때문에 보다 진보된 개념(데이타들로부터 이론과 원리를 학습하는)이 도입된 자기학습 전문가 시스템의 적용연구는 앞으로 여러분야에서 폭넓게 이루어 질 것으로 기대된다.

  • PDF

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

A User Driven Adaptive Bandwidth Video Streaming System (사용자 기반 가변 대역폭 영상 스트리밍 시스템)

  • Chung, Yeongjee;Ozturk, Yusuf
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.825-840
    • /
    • 2015
  • Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences(i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions.

A Study on Performance Evaluation of HM-Net Adaptation System Using the State Level Sharing (상태레벨 공유를 이용한 HM-Net 적응화 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;황철준;김범국;김광수;성우창;정현열
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.397-400
    • /
    • 2003
  • 본 연구에서는 KM-Net(Hidden Markov Network)을 다양한 태스크에의 적용과 화자의 특성을 효과적으로 나타내기 위해 HM-Net 음성인식 시스템에 MLLR(Maximum Likelihood Linear Regression) 적응방법을 도입하였으며, HM-Net 학습 알고리즘을 개량하여 회귀클래스 생성방법을 제안한다. 제안방법은 PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) 알고리즘의 문맥방향 상태분할에 의한 상태레벨 공유를 이용한 방법으로 새로운 화자로부터 문맥정보와 적응화 데이터의 발성 양에 의존하여 결정된 많은 적응 파라미터들을(평균, 분산) 자유롭게 제어할 수 있게 된다. 제안방법의 유효성을 확인하기 위해 국어공학센터(KLE) 452 음성 데이터와 항공편 예약관련 연속음성을 대상으로 인식실험을 수행한 결과, 전체적으로 음소인식의 경우 평균 34-37%, 단어인식의 경우 평균 9%, 연속음성인식의 경우 평균 7-8%의 인식성능 향상을 각각 보였다. 또한 적응화 데이터의 양에 따른 인식성능 비교에서, 제안방법을 적용한 인식 시스템이 적응 데이터의 양이 적은 경우에도 향상된 인식률을 보였으며. 잡음을 부가한 음성에 대한 적응화 실험에서도 향상된 인식성능을 보여 MLLR 적응방법의 특성을 만족하였다. 따라서 MLLR 적응방법을 도입한 HM-Net 음성인식 시스템에 제안한 회귀클래스 생성방법이 유효함을 확인한 수 있었다.

  • PDF

Implementation of Neuro-Fuzzy Controller for Noise Cancelling in a Cavity (밀폐공간 소음제어를 위한 뉴로-퍼지 제어기 구현)

  • 박희경;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.282-288
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용하여 밀폐공간에서의 능동 소음 제어기를 구현하였다. 능동 소음 제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화라고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하여 파라미터를 오차 역전파 학습을 통하여 변화시킴으로써 잡응의 특성에 효과적을 적응하는 능동 소음 제어기를 구성하였다. 원신호는 음성신호를 사용하였으며 실제 소음과 소음 전달경로인 1차경로를 통과한 왜곡된 소음은 실험에 의해 얻은 데이터를 사용하였다. 제어신호의 전달경로인 2차경로는 100[kHz]에서 1[kHz]까지의 주파수 특성을 고려하여 curve fitting 방법을 사용하여 4차로 모델링한 결과를 사용하였다. 제안한 능동 소음 제어기의 성능을 시뮬레이션을 통하여 확인하였다.

  • PDF

Application of Neural Network Self Adaptative Control System for A.C. Servo Motor Speed Control (A.C. 서보모터 속도 제어를 위한 신경망 자율 적응제어 시스템의 적용)

  • Park, Wal-Seo;Lee, Seong-Soo;Kim, Yong-Wook;Yoo, Seok-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.103-108
    • /
    • 2007
  • Neural network is used in many fields of control systems currently. However, It is not easy to obtain input-output pattern when neural network is used for the system of a single feedback controller and it is difficult to get satisfied performance with neural network when load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object in place of activation function of Neural Network output node. As the Neural Network self adaptive control system is designed in simple structure neural network input-output pattern problem is solved naturally and real tin Loaming becomes possible through general back propagation algorithm. The effect of the proposed Neural Network self adaptive control algorithm was verified in a test of controlling the speed of a A.C. servo motor equipped with a high speed computing capable DSP (TMS320C32) on which the proposed algorithm was loaded.

Adaptive Learning Control of Neural Network Using Real-Time Evolutionary Algorithm (실시간 진화 알고리듬을 통한 신경망의 적응 학습제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1092-1098
    • /
    • 2002
  • This paper discusses the composition of the theory of reinforcement teaming, which is applied in real-time teaming, and evolutionary strategy, which proves its the superiority in the finding of the optimal solution at the off-line teaming method. The individuals are reduced in order to team the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It is possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because of the teaming process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes. In the future, studies are needed on the proof of the theory through experiments and the characteristic considerations of the robustness against the outside disturbances.

Control of RPG Game Characters using Genetic Algorithm and Neural Network (유전 알고리즘과 신경망을 이용한 RPG 게임 캐릭터의 제어)

  • Kwun, O-Kyang;Park, Jong-Koo
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.13-22
    • /
    • 2006
  • As the development of games continues, the intelligence of NPC is becoming more and more important. Nowadays, the NPCs of MMORPGS are not only capable of simple actions like moving and attacking players, but also utilizing variety of skills and tactics as human-players do. This study suggests a method that grants characters used in RPG(Role-Playing Game) an ability of training and adaptation using Neural network and Genetic Algorithm. In this study, a simple game-play model is constructed to test how suggested intellect characters could train and adapt themselves to game rules and tactics. In the game-play model, three types of characters(Tanker, Dealer, Healer) are used. Intellect character group constructed by NN and GA, and trained by combats against enemy character group constructed by FSM. As the result of test, the proposed intellect characters group acquire an appropriate combat tactics by themselves according to their abilities and those of enemies, and adapt change of game rule.

  • PDF

Adaptive Learning Control of an Uncertain Robot Manipulator Using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 불확실한 로보트 매니퓰레이터의 적응 학습 제어)

  • 김성현;최영길;김용호;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.25-32
    • /
    • 1996
  • This paper will propose the direct adaptive learning control scheme based on adaptive control technique and intelligent control theory for a nonlinear system. Using the proposed learning control scheme, we will apply to on-line control an uncertain but for model perfect matching, it's structure condition is known. The effectiveness of the proposed control schem will be illustrated by simulations of a robot manipulator.

  • PDF