• Title/Summary/Keyword: 적응 학습 제어

Search Result 169, Processing Time 0.022 seconds

DNN-Based Adaptive Optimal Learning Controller for Uncertain Robot Systems (동적 신경망에 기초한 불확실한 로봇 시스템의 적응 최적 학습제어기)

  • 정재욱;국태용;이택종
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.1-10
    • /
    • 1997
  • This paper presents an adaptive optimal learning controller for uncertian robot systems which makes use fo simple DNN(dynamic neural network) units to estimate uncertain parameters and learn the unknown desired optimal input. With the aid of a lyapunov function, it is shown that all that error signals in the system are bounded and the robot trajectory converges to the desired one globally exponentially. The effectiveness of the proposed controller is hsown by applying the controller to a 2-DOF robot manipulator.

  • PDF

스마트 메카트로닉스 창조인력양성 사업단 - 창원대학교 지방대학 특성화 사업

  • Bae, Dong-Sik
    • Ceramist
    • /
    • v.19 no.4
    • /
    • pp.74-79
    • /
    • 2016
  • 창원대학교 스마트융합 메카트로닉스 인력양성 사업단의 교육 목표는 1) 창조적 교육과정을 통한 지역거점 특성화, 2) 세계적인 수준의 경쟁력을 갖춘 기술 인력 양성, 3) 분석력, 창의력, 적응력 및 설계능력을 갖춘 능동적 기술인력 양성, 4) 시대의 환경변화를 선도하는 진취적 기술인력 양성, 5) 인재공급 및 취업률향상으로 정하였다. 이를 달성하기 위한 교육전략은 1) Major전문성(메카트로닉스심화, 공통실험교육 강화), 2) Global국제적감각(팀기반능력, 근접학문이해능력), 3) Creative지속성장 (Capstone Design, 현장적응교육)으로 정하였다. 따라서 메카트로닉스공통융합심화트랙 교육과정으로 기계, 전기전자제어, 신소재분야의 공통트랙으로 이론 30학점, 실험 6학점(16과목, 36학점)을 신설하여 운영하였다. 수강지도를 통한 교차이수권장 학생들의 자율선택기반을 조성하고, 현장적응교육, 캡스톤 디자인 2과목 7학점을 수강하도록 하였다. 학생의 본인주도 학습권을 인정하여 2학년 진학 시 학생본인직접 100% 자기 전공 선택 기회 제공하는 구조조정을 실하고, 타 전공 관련정보 상호교류, 학문간 통합교육, 조직의 유연성확보가 가능하도록 하였다. 교과목(정규/비정규)개편을 통해 개선된 현장 실무 형 내실화 교육의 실시하여 취업률을 향상시켰다. 따라서 창원대학교 신소재공학부는 기계, 전기전자에 관련된 기본소양을 의무적으로 학습하기 때문에 메카트로닉스 분야에서 필요한 신소재공학도를 육성하는 기반을 마련하였다.

Endomorphic Modeling of Intelligent Systems : Intelligent Card Game Players (지능시스템의 내배엽성 모델링 : 지능적 카드 게임경기자)

  • Kim, Yeong-Gwang;Lee, Jang-Se;Ji, Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.12
    • /
    • pp.1507-1518
    • /
    • 1999
  • 본 논문은 제어대상체의 지식을 이용하여 적절한 의사결정을 내리거나 또는 지속적으로 변화하는 주변환경에 적응해 나갈 수 있는 지능시스템 설계를 위한 내배엽성 모델링 방법론을 제시한다. 이러한 지능적 내배엽성 시스템은 의사결정 모델, 지식기반의 내부모델, 그리고 내부모델의 구축모델 등을 기반으로 달성될 수 있다. 학습기능의 모델링을 위하여 수정된 귀납추론 방법과 적응형 전문가 시스템 방법이 제안되었다. 제시된 방법론은 지능적 학습 및 의사결정 기능을 갖춘 지능적 카드경기자 모델링의 예를 통하여 그 가능성을 검증하였다. Abstract This paper presents an endomorphic modeling methodology for designing intelligent systems that can determine by itself using its knowledge of the world and adapt itself to continuously changing circumstances. We have developed such an intelligent endomorphic system by integrating the decision making component and knowledge based internal model with internal model construction model. Learning capabilities are established using the modified inductive reasoning and adaptive expert system techniques we developed. Proposed methodology has been successfully applied to a design of intelligent card game players capable of supporting the intelligent learning and decision making.

Design of a Direct Self-tuning Controller Using Neural Network (신경회로망을 이용한 직접 자기동조제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.264-274
    • /
    • 2003
  • This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm (실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

Adaptive control for robot manipulator through repeated learning (반복 학습을 통한 로보트 매니퓰레이터의 적응 제어)

  • Lee, Cheol;An, Duk-Hwan;Lee, sang-Hyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.269-274
    • /
    • 1990
  • Usually, robot manipulators in production lines are operated with reperting work trajectories. This paper presents the repeated adaptive learning algorithm for robot manipulates for the case of a trajectory. This algorithm uses the nonlinear dynamic model including the repeated friction compensating term, The advantage of the scheme is that It allows friction compensation which may be otherwise difficult for differently constructed models. A secondary advantage of the sheme is that it can also adapt to torque calculation in order to reduce the computational load of the control computer. To show the efficiency of the proposed controller, a computer simulation is performed for the planar robot manipulator with a 2 degree of freedom.

  • PDF

Robot agent control for the adaptation to dynamic environment : Learning behavior network based on LCS with keeping population by conditions (동적 환경에서의 적응을 위한 로봇 에이전트 제어: 조건별 개체 유지를 이용한 LCS기반 행동 선택 네트워크 학습)

  • Park Moon-Hee;Park Han-Saem;Cho Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • 로봇 에이전트는 변화하는 환경에서 센서정보를 바탕으로 적절한 행동을 선택하며 동작하는 것이 중요하다. 행동 선택 네트워크는 이러한 환경에서 변화하는 센서정보에 따라 실시간으로 행동을 선택할 수 있다는 점에서, 장시간에 걸친 최적화보다 단시간 내 개선된 효율성에 초점을 맞추어 사용되어 왔다. 하지만 행동 선택 네트워크는 초기 문제에 의존적으로 설계되어 변화하는 환경에 유연하게 대처하지 못한다는 맹점을 가지고 있다. 본 논문에서는 행동 선택 네트워크의 연결을 LCS를 기반으로 진화 학습시켰다. LCS는 유전자 알고리즘을 통해 만들어진 규칙들을 강화학습을 통해 평가하며, 이를 통해 변화하는 환경에 적합한 규칙을 생성한다. 제안하는 모델에서는 LCS의 규칙이 센서정보를 포함한다. 진화가 진행되는 도중 이 규칙들이 모든 센서 정보를 포함하지 못하기 때문에 현재의 센서 정보를 반영하지 못하는 경우가 발생할 수 있다. 본 논문에서는 이를 해결하기 위해 센서정보 별로 개체를 따로 유지하는 방법을 제안한다. 제안하는 방법의 검증을 위해 Webots 시뮬레이터에서 케페라 로봇을 이용해 실험을 하여, 변화하는 환경에서 로봇 에이전트가 학습을 통해 올바른 행동을 선택함을 보였고, 일반LCS를 사용한 것보다 조건별 개체 유지를 통해 더 나은 결과를 보이는 것 또한 확인하였다.

  • PDF

The Design Methodology of An Efficinet Neuro-Fuzzy Stysem (효율적인 뉴로-퍼지 시스템의 설계 방법론)

  • 조영임;황종선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.3
    • /
    • pp.38-54
    • /
    • 1993
  • 퍼지 제어기(FLC)는 Max-Min CRI 방법을 이용하여 추론하는 시스템이다. 그러나 이 방법은 주관적인 멤버쉽 함수의 결정, 오류 발생 가중치 전략, 비합리적인 추론 규칙들의 조합이라는 세가지 문제점 때문에 원하는 추론 결과와 실제 추론 결과 사이에 상당한 오류 영역을 발생시킨다. 본 논문에서는 이를 해결하기 위해 퍼지 이론에 신경 회로망의 학습 기능이 융합되어 지능적으로 작동하는 뉴로-퍼지 시스템(INFS)을 제안한다. INFS는 이상의 문제 해결 방안이 지식 획득 단계, 적응 조절단계를 통해 작동함으로써 임의의 입력에 대해서도 추론이 가능한 시스템이다. 제안된 INFS를직류 계열 모니터에 적용한 결과 신경 회로망을 사용하지 않았을때 보다 오류 영역을 상당히 줄여주었다. 또한 학습 시간을 고려해 볼 때, INFS에서 사용하는 추론 방법(NCRI 방법)이 지금까지 다른 방법에 비해 휠씬 효율적이었다.

  • PDF