Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.6
/
pp.1-10
/
1997
This paper presents an adaptive optimal learning controller for uncertian robot systems which makes use fo simple DNN(dynamic neural network) units to estimate uncertain parameters and learn the unknown desired optimal input. With the aid of a lyapunov function, it is shown that all that error signals in the system are bounded and the robot trajectory converges to the desired one globally exponentially. The effectiveness of the proposed controller is hsown by applying the controller to a 2-DOF robot manipulator.
창원대학교 스마트융합 메카트로닉스 인력양성 사업단의 교육 목표는 1) 창조적 교육과정을 통한 지역거점 특성화, 2) 세계적인 수준의 경쟁력을 갖춘 기술 인력 양성, 3) 분석력, 창의력, 적응력 및 설계능력을 갖춘 능동적 기술인력 양성, 4) 시대의 환경변화를 선도하는 진취적 기술인력 양성, 5) 인재공급 및 취업률향상으로 정하였다. 이를 달성하기 위한 교육전략은 1) Major전문성(메카트로닉스심화, 공통실험교육 강화), 2) Global국제적감각(팀기반능력, 근접학문이해능력), 3) Creative지속성장 (Capstone Design, 현장적응교육)으로 정하였다. 따라서 메카트로닉스공통융합심화트랙 교육과정으로 기계, 전기전자제어, 신소재분야의 공통트랙으로 이론 30학점, 실험 6학점(16과목, 36학점)을 신설하여 운영하였다. 수강지도를 통한 교차이수권장 학생들의 자율선택기반을 조성하고, 현장적응교육, 캡스톤 디자인 2과목 7학점을 수강하도록 하였다. 학생의 본인주도 학습권을 인정하여 2학년 진학 시 학생본인직접 100% 자기 전공 선택 기회 제공하는 구조조정을 실하고, 타 전공 관련정보 상호교류, 학문간 통합교육, 조직의 유연성확보가 가능하도록 하였다. 교과목(정규/비정규)개편을 통해 개선된 현장 실무 형 내실화 교육의 실시하여 취업률을 향상시켰다. 따라서 창원대학교 신소재공학부는 기계, 전기전자에 관련된 기본소양을 의무적으로 학습하기 때문에 메카트로닉스 분야에서 필요한 신소재공학도를 육성하는 기반을 마련하였다.
본 논문은 제어대상체의 지식을 이용하여 적절한 의사결정을 내리거나 또는 지속적으로 변화하는 주변환경에 적응해 나갈 수 있는 지능시스템 설계를 위한 내배엽성 모델링 방법론을 제시한다. 이러한 지능적 내배엽성 시스템은 의사결정 모델, 지식기반의 내부모델, 그리고 내부모델의 구축모델 등을 기반으로 달성될 수 있다. 학습기능의 모델링을 위하여 수정된 귀납추론 방법과 적응형 전문가 시스템 방법이 제안되었다. 제시된 방법론은 지능적 학습 및 의사결정 기능을 갖춘 지능적 카드경기자 모델링의 예를 통하여 그 가능성을 검증하였다. Abstract This paper presents an endomorphic modeling methodology for designing intelligent systems that can determine by itself using its knowledge of the world and adapt itself to continuously changing circumstances. We have developed such an intelligent endomorphic system by integrating the decision making component and knowledge based internal model with internal model construction model. Learning capabilities are established using the modified inductive reasoning and adaptive expert system techniques we developed. Proposed methodology has been successfully applied to a design of intelligent card game players capable of supporting the intelligent learning and decision making.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.40
no.4
/
pp.264-274
/
2003
This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.
Journal of Institute of Control, Robotics and Systems
/
v.10
no.5
/
pp.395-401
/
2004
We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.
Journal of Institute of Control, Robotics and Systems
/
v.8
no.7
/
pp.584-588
/
2002
The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.
Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.
Usually, robot manipulators in production lines are operated with reperting work trajectories. This paper presents the repeated adaptive learning algorithm for robot manipulates for the case of a trajectory. This algorithm uses the nonlinear dynamic model including the repeated friction compensating term, The advantage of the scheme is that It allows friction compensation which may be otherwise difficult for differently constructed models. A secondary advantage of the sheme is that it can also adapt to torque calculation in order to reduce the computational load of the control computer. To show the efficiency of the proposed controller, a computer simulation is performed for the planar robot manipulator with a 2 degree of freedom.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.335-338
/
2005
로봇 에이전트는 변화하는 환경에서 센서정보를 바탕으로 적절한 행동을 선택하며 동작하는 것이 중요하다. 행동 선택 네트워크는 이러한 환경에서 변화하는 센서정보에 따라 실시간으로 행동을 선택할 수 있다는 점에서, 장시간에 걸친 최적화보다 단시간 내 개선된 효율성에 초점을 맞추어 사용되어 왔다. 하지만 행동 선택 네트워크는 초기 문제에 의존적으로 설계되어 변화하는 환경에 유연하게 대처하지 못한다는 맹점을 가지고 있다. 본 논문에서는 행동 선택 네트워크의 연결을 LCS를 기반으로 진화 학습시켰다. LCS는 유전자 알고리즘을 통해 만들어진 규칙들을 강화학습을 통해 평가하며, 이를 통해 변화하는 환경에 적합한 규칙을 생성한다. 제안하는 모델에서는 LCS의 규칙이 센서정보를 포함한다. 진화가 진행되는 도중 이 규칙들이 모든 센서 정보를 포함하지 못하기 때문에 현재의 센서 정보를 반영하지 못하는 경우가 발생할 수 있다. 본 논문에서는 이를 해결하기 위해 센서정보 별로 개체를 따로 유지하는 방법을 제안한다. 제안하는 방법의 검증을 위해 Webots 시뮬레이터에서 케페라 로봇을 이용해 실험을 하여, 변화하는 환경에서 로봇 에이전트가 학습을 통해 올바른 행동을 선택함을 보였고, 일반LCS를 사용한 것보다 조건별 개체 유지를 통해 더 나은 결과를 보이는 것 또한 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.3
no.3
/
pp.38-54
/
1993
퍼지 제어기(FLC)는 Max-Min CRI 방법을 이용하여 추론하는 시스템이다. 그러나 이 방법은 주관적인 멤버쉽 함수의 결정, 오류 발생 가중치 전략, 비합리적인 추론 규칙들의 조합이라는 세가지 문제점 때문에 원하는 추론 결과와 실제 추론 결과 사이에 상당한 오류 영역을 발생시킨다. 본 논문에서는 이를 해결하기 위해 퍼지 이론에 신경 회로망의 학습 기능이 융합되어 지능적으로 작동하는 뉴로-퍼지 시스템(INFS)을 제안한다. INFS는 이상의 문제 해결 방안이 지식 획득 단계, 적응 조절단계를 통해 작동함으로써 임의의 입력에 대해서도 추론이 가능한 시스템이다. 제안된 INFS를직류 계열 모니터에 적용한 결과 신경 회로망을 사용하지 않았을때 보다 오류 영역을 상당히 줄여주었다. 또한 학습 시간을 고려해 볼 때, INFS에서 사용하는 추론 방법(NCRI 방법)이 지금까지 다른 방법에 비해 휠씬 효율적이었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.