• 제목/요약/키워드: 적응 학습 제어

검색결과 169건 처리시간 0.025초

적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝 (Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS)

  • 김동화
    • 조명전기설비학회논문지
    • /
    • 제14권1호
    • /
    • pp.30-37
    • /
    • 2000
  • 본 논문에서는 적웅형 신경망-퍼지 추론(ANFlS) 방법을 이용해 가스터빈의 각 변수 변화에 대해 가장 최적으로 제어 될 수 있는 전달함수를 구하고 또 2자유도 Pill제어기를 튜닝하는 문제를 연구하였다. 적응형 신경망-퍼지 추론(ANFlS)법은 기존의 퍼지나 신경망에 비해 플랜트 특성에 따라 소속함수의 모양을 적절하게 가변하면서 학습 할 수 있어 변수가 급격히 변하는 플랜트 제어에서 매우 효과적인 방법이다. 한편 가스터빈의 기동시간은 매우 짧고 제어변수도 많아 최적 기동을 위해서는 기동순간마다 제어변수 값을 가변시켜야 하나 실질적으로 이에 적합한 제어기를 설계하는 것은 매우 어렵다. 따라서 본 연구에서는 실용적인 지능형 제어기를 연구하기 위해 적웅형 신경망 퍼지 추론법을 군산 가스터빈 의 실제 운전 데이터에 적용하여 특성을 확인한 후 2자유도 Pill 제어기를 적용하여 튜닝하였다. 그 결과 적웅형 신경망올 이용한 결과가 기폰의 Pill 제어기에 비해 우수함을 나타내었다 본 연구는 실제 운전되는 가스터빈의 데이터를 이용해 특성을 고찰한 것이므로 다른 유사한 프로세스에도 유용하게 활용 할 수 있을 것으로 기대된다.

  • PDF

직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선 (The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum)

  • 김광준;윤찬호;김천석
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.22-33
    • /
    • 2005
  • 본 논문에서 직접순차 확산 스펙트럼 시스템의 적응 횡단선 필터에서 LMS 알고리즘의 수렴 속도를 향상시키기 위한 효율적인 신호간섭 제어기법을 제안한다. 수신 데이터를 재순환하여 심볼 시간주기에 계수들을 곱함으로써 적응되는 제안된 알고리즘의 수렴특성이 수렴 속도의 향상을 이론적으로 증명하기 위해 분석한다. 스텝-크기 매개변수 ${\mu}$가 증가됨에 따라 알고리즘의 수렴 속도가 제어된다. 또한, 스텝-크기 매개변수 ${\mu}$의 증가는 실험적으로 계산된 학습 곡선에서 분산을 감소시키는 효과를 갖는다. 고유치 확산을 증가시킴에 따라 즉응 등화기의 수렴속도를 천천히 제어하고 평균 자승 에러의 안정-상태 값을 증가시키는 효과를 나타내며 데이터-재사용 LMS 기술이 수렴속도를 (B+1)배만큼 증가시켜 필터 알고리즘에서 신호간섭제어의 우수성을 입증한다.

신경회로의 로보트 및 자동화 응용

  • 오세영
    • 전자공학회지
    • /
    • 제18권10호
    • /
    • pp.29-38
    • /
    • 1991
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각 인식, 음성인식, 촉각 감지등 패턴 인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control)역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로봇 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어(neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적, 학습, 불확실한 환경에서의 적응, 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로봇나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시한 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로봇나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어(intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구개발 투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로봇 및 시스템 제어에 관한 기초 이론과 신경회로 적용기술을 소개하고 기존방법과 비교했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF

PID 및 적응학습 제어기법을 이용한 자동화 엔진의 공기-연료비 제어시스템 연구 (PID and adaptive learning control for engine air-fuel control system)

  • 이덕규;최돈;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.658-662
    • /
    • 1990
  • In the air-fuel control of automotive engine to improve its efficiency, fuel economy and less emissions, conventional control methods using $O_{2}$ sensor or the lean air-fuel ratio sensor provide only open control in rich conditions. Control with a wide range air-fuel sensor makes it possible to employ closed loop control for all engine conditions including rich combustion. With a wide range A/F sensor and A/F transfer functions, a PID control system is constructed which employs an learning scheme. A/F controller is designed which enables to improve the ability of its compensation for sensors and actuators, and its control operation is evaluated by computer simulation.

  • PDF

강인.적응학습제어 방식에 의한 이동로봇의 동력학 제어 (Dynamic control of mobile robots using a robust.adaptive learning control method)

  • 남재호;백승민;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.178-186
    • /
    • 1998
  • In this paper, a robust.adaptive learning control scheme is presented for precise trajectory tracking of rigid mobile robots. In the proposed controller, a set of desired trajectories is defined and used in constructing the control input and learning rules which constitute the main part of the proposed controller. Stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, etc., are shown thorugh experiments and computer simulations.

  • PDF

전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계 (Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability)

  • 정형환;정문규;이정필;이준탁
    • 조명전기설비학회논문지
    • /
    • 제15권4호
    • /
    • pp.14-22
    • /
    • 2001
  • 본 논문에서는 전력계통의 저주파 진동 억제와 안정도 향상을 위해 적응 뉴로-퍼지 전 보상기(Adaptive Neuro-Fuzzy Precompensator, ANFP)를 설계하였다. 여기서 ANFP는 종래의 전력계통 안정화 장치(Power System Stabilizer, PSS)를 보상하도록 설계되며, 이 설계기법은 기존의 PSS 최적 파라미터를 구하는 방식과는 달리 현재 사용중인 PSS 파라미터를 고정시켜놓고, ANFP만을 추가하는 구조적인 장점을 나타낸다. 먼저, 학습 능력을 가지는 퍼지 전 보상기가 구성되며, 이는 발전 유니트의 입출력 데이터로부터 학습된다. ANFP는 학습의 특성을 가지기 때문에 보상기의 퍼지규칙과 소속함수는 학습 알고리즘에 의해 자동으로 동조될 수 있다 학습은 ANFP와 목표 제어기(desired controller)의 출력을 비교하여 평가되는 오차를 최소화하도록 수행된다. 사례 연구 들에서 다양한 동작 조건들 상에서 전력계통의 우수한 제동을 제공할 수 있었으며, 시스템의 동특성을 향상시킬 수 있었다

  • PDF

연속 시간 혼돈 비선형 시스템을 위한 신경 회로망 제어기의 설계 ((Design of Neural Network Controller for Contiunous-Time Chaotic Nonlinear Systems))

  • 오기훈;최윤호;박진배;임계영
    • 전자공학회논문지SC
    • /
    • 제39권1호
    • /
    • pp.51-65
    • /
    • 2002
  • 본 논문에서는 혼돈 비선형 시스템의 지능 제어를 위해 간접 적응 제어 방식에 기초한 신경 회로망 제어기 설계 방법을 제안하였다. 제안된 제어 방법은 혼돈 비선형 시스템의 동정을 위해 다층 신경 회로망과 간단한 상태 공간 신경 회로망을 사용한 직-병렬 동정 구조를 이용하여 오프 라인으로 동정 과정을 수행하였으며, 학습된 혼돈 비선형 시스템에 대한 신경 회로망 모델을 사용하여 온 라인으로 제어를 수행하였다. 이때 혼돈 비선형 시스템의 동정 및 제어를 위한 학습 방법은 오차 역전파 방법을 사용하였다. 한편 본 논문에서 제안된 제어 방법을 연속 시간 혼돈 비선형 시스템인 Duffing 방정식과 Lorenz 방정식에 각각 적용하여 신경 회로망을 사용한 기존의 제어 방법과 컴퓨터 모의 실험을 통해 제어 성능을 비교 및 고찰하였다.

적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어 (Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate)

  • 이보희;이택승;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

국부적인 조명변화와 복잡한 배경에 강인한 손 끝 좌표 추적 (Fingertip Tracking Robust to Local Illumination Changes and Cluttered Background)

  • 김유호;김종선;이준호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.439-442
    • /
    • 2000
  • 본 연구는 손의 동작변화로 인한 손 영역의 국부적인 조명변화와 복잡한 배경환경에서 손 영역의 검지좌표를 안정적으로 검출, 추적하여 마우스 포인터를 제어하는 핑거 마우스 시스템을 제안하였다. 손의 동작변화로 인한 국부적인 조명변화에 강인한 손 영역 검출을 위한 적응적인 on-line학습법을 제안하였으며 복잡한 배경에서도 안정적인 손 영역 추적이 가능하도록 칼만 트렉킹과 차영상을 이용한 모션 세그멘테이션을 복합적으로 적용하였다. 실험결과 복잡한 배경과 손의 움직임에 상관 없이 검지 좌표를 안정적으로 추적 할 수 있었다.

  • PDF

신경회로망의 광학적 구현 (Optical Implementation of Neural Neworks)

  • 김흥만;정재우
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1991년도 광학 및 양자전자학 워크샵
    • /
    • pp.55-59
    • /
    • 1991
  • 신경회로망은 뒤뇌의 신경조직이 갖는 병렬적이며 분산적인 정보처리 능력을 흉내낸 인공적인 회로망이다. 이러한 신경회로망을 영상인식, 음성인식, 적응제어 및 최적화등에 응용할 경우 지금까지 얻지 못하였던 우수한 여러 가지 특성을 얻을수 있음을 알려짐에 따라 신경회로망을 구체적으로 구현하고자 하는 연구가 활발히 이루어지고 있다. 본 고에서는 신경소자간의 연결세기의 변조에 의한 학습 원리를 설명하고 광전기적인 그현방법에 대해서 몇 개의 예를 들어 설명하고 그 발전 가능성에 대하여 기술하였다.

  • PDF