• Title/Summary/Keyword: 적응 뉴로 퍼지추론 시스템

Search Result 25, Processing Time 0.027 seconds

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

Diagnosis of Deterioration Grades for Overhead Transmission Lines using Adaptive Neuro-Fuzzy Inference System (적응 뉴로퍼지 추론시스템을 이용한 가공 송전선의 열화등급 진단)

  • 김성덕;이상래
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Aluminum Stranded Conductors Steel Reinforced (ACSR) in overhead transmission lines have slowly degraded due to pollutants in the air for a long period of time, so in the 2000, a number of them has been exceeded over their forecasted useful life. Since most of them are faced with assessment their present conditions in regard to economical maintenance, in this paper, we have suggested a method in order to evaluate the current condition of aged conductors by using dominant parameters such as elapsed years, environment index, and conductor configuration. A diagnostic system for predicting the deterioration grades corresponding to the lifetime of aged conductors is described, which is designed as an Adaptive Neuro-fuzzy Inference System (ANFIS) based on knowledge and experiences of experts. Applying this diagnostic system to practical transmission lines in domestic, it is shown that the system can be effectively used as a guide to perform nondestructive diagnosis and economical operation for old ACSR conductors.

A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정)

  • Seo, Han-Seog;Yim, Wha-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, this study restores the distorted image to its original image by compensating for the distortion of image from a fixed-focus camera lens. The various developments and applications of the imaging devices and the image sensors used in a wide range of industries and expanded use, but due to the needs of the small size and light weight of the camera, the distortion from acquiring images of the distorted curvature of the lens tends to affect many. In particular, the three-dimensional imaging camera, each different distortion of left and right lens cause the degradation of three-dimensional sensitivity and left-right image distortion ratio. we approached the way of generalizing the approximate equations to restore each part of left-right camera images to the coordinators of the original images. The adaptive Neuro-Fuzzy Inference System is configured for it. This system is divided from each membership function and is inferred by 1st order Sugeno Fuzzy model. The result is that the compensated images close to the left, right original images. Using low-cost and compact imaging lens by which also determine the exact three-dimensional image-sensing capabilities and will be able to expect from this study.

Control of Inverted Pendulum Using Adaptive Neuro Fuzzy Inference (적응 뉴로 퍼지 추론 시스템을 이용한 도립 진자 제어)

  • Hong, Dae-Seung;Bang, Sung-Yun;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.693-695
    • /
    • 1998
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. It is very important to decide parameters of IF-THEN rules. Because fuzzy controller can make more adequate force to the plant by means of parameter optimization, which is accomplished by learning procedure. In this paper, we apply fuzzy controller designed to the inverted pendulum.

  • PDF

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Detection of High Impedance Fault Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로 퍼지 추론 시스템을 이용한 고임피던스 고장검출)

  • 유창완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.426-435
    • /
    • 1999
  • A high impedance fault(HIF) is one of the serious problems facing the electric utility industry today. Because of the high impedance of a downed conductor under some conditions these faults are not easily detected by over-current based protection devices and can cause fires and personal hazard. In this paper a new method for detection of HIF which uses adaptive neuro-fuzzy inference system (ANFIS) is proposed. Since arcing fault current shows different changes during high and low voltage portion of conductor voltage waveform we firstly divided one cycle of fault current into equal spanned four data windows according to the mangnitude of conductor voltage. Fast fourier transform(FFT) is applied to each data window and the frequency spectrum of current waveform are chosen asinputs of ANFIS after input selection method is preprocessed. Using staged fault and normal data ANFIS is trained to discriminate between normal and HIF status by hybrid learning algorithm. This algorithm adapted gradient descent and least square method and shows rapid convergence speed and improved convergence error. The proposed method represent good performance when applied to staged fault data and HIFLL(high impedance like load)such as arc-welder.

  • PDF

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.