최근 고속화자적응 기법으로 eigenvoice 방식이 많이 사용되고 있다. Eigenvoice 적응방식에서도 적응화자의 적응 데이터가 매우 적은 경우에는 적절한 가중치의 추정이 어렵기 때문에 적응 데이터가 어느 정도 많은 경우에 비해 인식성능 향상이 크지 않다. 본 논문에서는 적응 데이터가 적을 때의 성능향상을 위하여 eigenvoice의 가중치 분포 특성을 이용한 eigenvoice 기반 고속화자적응을 제안한다. PBW 452 데이터베이스를 사용한 어휘독립 단어인식 실험 결과에서 가중치 문턱치(threshold) 적용 방식을 사용하여 적응 데이터가 매우 적은 경우의 상대적인 성능 저조 문제를 완화시켰다. 적응단어를 단 1개만 사용한 경우 가중치 문턱치 적용 방식을 사용하여 단어 오인식률을 9-18% 정도 감소시켰다.
실제의 음성 인식 및 음성 통신 등의 음성 처리 시스템에서는 음성 신호를 손상시키는 배경 잡음 신호의 존재로 그 성능이 많이 저하된다. 특히 차량 내와 같은 잡음이 극심한 상황에서는 전처리 부분에서 이러한 잡음을 제거시켜 주어야한다. 본 연구는 자동차 내의 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성 정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 추정하는 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법 사용의 전제 조건은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재한다. 이러한 이유에서 본 연구는 잡은 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화하는 차감법을 제안한다. 이러한 방법은 추정된 잡음 신호의 변화율을 이용하여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 정용한 인식 실험에서도 성능이 향상됨을 확인하였다.
카메라 영상을 통하여 무인 헬리콥터 동작을 추정하기 위해 적응형 가중치를 사용한 새로운 Ego-Motion을 검출 기법을 제안하였다. 무인 헬리콥터 동적 특성은 비선형이며, 심한 진동 발생으로 영상 번짐(blur) 현상이 나타나기 때문에 상관 값만을 고려한 정합 방법으로는 빈번히 오차가 발생한다. 본 논문에서는 가속도, 각 가속도 및 제어입력 값에 의한 위치 추정 값과 상관 값 및 에지 강도를 가중치에 의해 융합하여 정확한 Ego-Motion을 계산할 수 있는 기법을 제안하였다. 또한 무인 헬리콥터의 가속도, 각 가속도, 상하 속도에 따라서 영상의 번짐 정도가 달라 이들 같이 크면 위치오차에 가중을 크게 주고, 작으면 상관 값에 가중치를 적게 주는 적응형 가중치 결정 알고리즘을 적용하였다. 제안한 적응형 가중치 기법을 무인 헬리콥터에 실험한 결과 카메라에 포착된 영상에 의해 무인헬기의 동작을 정확히 추정 할 수 있었다.
본 연구는 자동차내 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재 한다. 이러한 이유는 본 연구는 잡음 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화시키는 차감법을 제안한다. 이 방법은 추정된 잡음 신호의 변화율을 이용하 여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 적용한 인식 실험에서도 성능이 향상됨을 확인하였다.
본 논문에서는 적응적 가중치를 사용한 Least Mean Square Error(LMSE) 최적화 기반의 심전도 개인 인식 방법을 제안하다. 제안하는 방법은 잡음 제거를 위한 전처리과정, 평균 심전도 신호 및 표준편차를 추출한다. 그리고 추출된 정보들을 DB에 저장하고 이를 적응적 가중치로 사용하여 개인 인식에 사용한다. 적응적 가중치는 두 가지를 사용하는데 첫 번째 적응적 가중치는 입력 신호의 표준편차의 역수이고, 두번째 적응적 가중치는 DB에 저장된 사람들의 평균 심전도 신호간의 표준편차에 비례한 것이다. 제안한 방법으로 실험한 결과 32명에 대해서 100%의 인식률을 보였다.
본 논문에서는 고속 움직임 예측(Fast Motion Estimation)방법의 일종인 다단계 연속 제거 알고리즘(MSEA : Multi-level Successive Elimination Algorithm)에 움직임의 역동성 정도를 고려하여 적응적인 가중치를 적용하는 방안에 대해 제안하였다. 움직임을 예측하는 과정에서 영상의 화질 손상이 발생하는 방식(Lossy Motion Estimation Algorithm)에서 모든 단위 블록(Macro Block)에 고정된 가중치만을 적용하는 기존의 방식과 달리 주위 블록의 움직임 벡터(Motion Vector)를 통해 움직임의 정도를 가정하여 적응적인 가중치를 적용함으로써 화질 손상을 줄이는 것이 목적이다. 제안하는 알고리즘으로 설계한 실험으로부터 MSEA에 적응적 가중치를 사용할 경우의 효율성을 확인하였다.
본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.
본 논문에서는 다층 퍼셉트론 신경망에서 연결선 수를 최소로 하면서 일반화 성능을 향상시키기 위해 가장 널리 쓰여지고 있는 Optimal Brain Surgeon을 이용한 프루닝(pruning)을 기반으로 하여 오차 함수의 가중치 감소항을 추가시키는 방법을 사용한다. 이때 학습 및 프루닝의 성능에 많은 영향을 미치는 가중치 감소항의 방영정도를 베이시안 테크닉에 기반하여 적응적으로 최적화 하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 벤치마크 데이터를 이용하여 실험을 수행하였다. 순수한 OBS 방법과 고정된 반영정도를 가진 가중치 감소항을 추가시킨 OBS, 그리고 제안하는 적응적 가중치 감소항을 적용한 OBS 방법을 비교하여 제한하는 방법이 기존의 두 방법에 비해 신경망 구조의 최적화 능력이 뛰어남을 확인할 수 있었다.
본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.