본 논문에서는 생체지문인식의 전처리 단계에서 정보 손실여부를 판단할 수 있는 중요한 파트인 전처리 이진화를 보다 효율적으로 수행하기 위한 알고리즘을 제안한다. 제안된 알고리즘은 각 인접 픽셀의 값을 계산하고, 적응적으로 이진화 여부를 판단 및 지문방향에 대한 방향성 향상을 통해, 융선(ridge)와 골(Valley)의 구분이 명확하지 않은 영역에서 발생하는 생체지문 데이터 손실과 연산량을 개선하였다. 본 논문의 성능평가를 위해 미국 NIST에서 제공하는 MINEX 지문샘플 데이터를 사용하였다. 모의실험 결과 기존 전처리 알고리즘보다 연산량은 평균 50% 감소하였고, 지문정보 손실 영역 부분이 효과적으로 개선됨을 확인하였다.
이진 출력 기기에서 연속 계조의 영상을 받아들여 이진값으로 출력하는 이진화 알고리즘 중한 예로 마스킹(masking) 방법이 있으며, 마스크 방식의 단점을 보완하였다. 동일한 마스크의 반복적인 사용으로 인하여 영상의 부분적인 특성을 잘 표현해 주지 못하는 마스크들의 단정을 보완하기 위해서 국부 적응 임계값과 테이블 방식의 적응 파라메타를 제안하였으며, 결과적으로 시각적으로 중요한 경계성분을 강조와 국부 처리시 계조 표현력이 부족한 배경영역도 충분히 표현할 수 있었다.
본 논문에서는 F-투영법과 기하학적인 성장기준을 적용하여 모듈화된 웨이블렛 신경망의 최적구조를 설계할 수 있는 성장과 전지 알고리즘을 제안한다. 기하학적인 성장기준은 지역오차를 고려한 예측 오차기준과 기존의 웨이블렛 함수와의 준직교성을 보장하는 웨이블렛 함수를 배치하기 위한 각도기준으로 구성되어 있다. 이러한 성장기준은 모듈화된 웨이블렛 신경망을 설계자 의도에 부합하도록 구성할 수 있는 방법론을 제시한다. 제안한 성장 알고리즘은 모듈화된 웨이블렛 신경망의 모듈과 망의 크기를 증가시킨다. 또한 소거 알고리즘은 모듈화된 웨이블렛 신경망의 모듈로 사용되는 웨이블렛 신경망의 지역화 특성으로 인해 모듈의 크기가 증가하는 문제점을 극복하기 위해 불필요한 모듈의 노드를 제거한다. 제안한 모듈화된 웨이블렛 신경망의 최적구조 설계알고리즘을 1차원과 2차원의 함수 근사화 문제에 적용하여 제안한 알고리즘의 성능을 검증하였다.
최근 인공지능을 구현하기 위한 기술들이 보편화되면서 특히, 기계 학습이 폭넓게 사용되고 있다. 기계 학습은 대량의 데이터를 수집하고 일괄적으로 처리하며 최종 조치를 취할 수 있는 통찰력을 제공하나, 작업의 효과가 즉시 학습 과정에 통합되지는 않는다. 본 연구에서는 비즈니스의 큰 이슈로서 실시간 데이터 분석의 성능을 개선하기 위한 적응형 학습 모델을 제안하였다. 적응형 학습은 데이터세트의 복잡성에 적응하여 앙상블을 생성하고 알고리즘은 샘플링 할 최적의 데이터 포인트를 결정하는데 필요한 데이터를 사용한다. 6개의 표준 데이터세트를 대상으로 한 실험에서 적응형 학습 모델은 학습 시간과 정확도에서 분류를 위한 단순 기계 학습 모델보다 성능이 우수하였다. 특히 서포트 벡터 머신은 모든 앙상블의 후단에서 우수한 성능을 보였다. 적응형 학습 모델은 시간이 지남에 따라 다양한 매개변수들의 변화에 대한 추론을 적응적으로 업데이트가 필요한 문제에 폭넓게 적용될 수 있을 것으로 기대한다.
자기구성 지도는 주어진 입력에 대해 올바른 출력 값이 제공되지 않는 비교사 방식으로 학습된다. 또한, 반응하는 순서나 위치를 통해 위상이 보존(topology preserving)되는 특성을 가지고 있어 많은 분야에 응용되고 있다. 그러나, 자기 구성지도는 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 단점을 가지고 있다. 구조 적응형 자기구성 지도는 자기구성 지도의 고정된 구조 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 또한 중요한 문제이다. 이 논문에서는 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도보다 다소 높은 인식률을 보였고, 숫자 별 인식률 편차를 줄일 수 있었다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.
본 논문에서는 에지를 고려한 순차주사화(EDI: edge dependent interpolation)와 전역 움직임 보상(GMC: globa1 motion compensation)을 결합한 효율적이면서도 안정적인 순차주사화 알고리즘을 제안한다. 일반적으로 에지를 고려한 순차주사화 알고리즘을 사용하면 한 장의 필드를 이용한 다른 순차주사화 알고리즘들을 사용했을 때보다 시각적으로 우수한 결과를 얻을 수 있다. 그러나 한 장의 필드에 담긴 영상 정보에는 한계가 있기 때문에, 한 장의 필드를 이용한 방법을 통해서는 원본 필드로부터 고화질의 순차 주사 영상을 얻을 수 없다. 이에 반해 움직임 정보를 이용한 순차주사화 방법은 공간 영역뿐 아니라 시간 영역의 정보를 사용하므로 한 장의 필드를 이용할 때 보다 더욱 정확하게 원 프레임을 복원해 내지만, 움직임 추정의 정확도에 따라 결과가 크게 좌우되는 단점이 있다. 따라서 제안된 알고리즘에서는 EDI와 GMC를 함께 사용한다. 또한 최상의 결과를 얻기 위해 GMC의 오류를 검출하는 적응적 문턱 알고리즘을 제안한다. 제안된 알고리즘을 사용하면 기존 방법들에 비해 수치상으로도 시각적으로도 뛰어난 결과가 나타나는 것을 실험을 통해 확인할 수 있다.
본 논문은 비디오의 시간적 화질 향상을 위한 새로운 프레임율 증가 방법을 제안한다. 제안하는 방법에서는 계층적 움직임 추정 시에 탐색범위를 적응적으로 변환하는 방법을 이용하며, 움직임 보상 시 보간되지 않은 부분에 한하여 양방향 움직임 추정 및 보상과 선형 보간법을 수행한다. 부정확한 움직임 벡터 추정으로 인한 오류를 방지하기 위하여 신뢰도를 기반으로 탐색범위를 적응적으로 조절하며, 움직임 추정에 대한 신뢰도를 높이기 위하여 분산이 높은 블록 순으로 움직임 추정을 수행한다. 또한, 보간되지 않은 영역에서 배경과 객체를 분리한 후 배경인 영역에서는 선형보간법을 수행하고, 객체로 추정된 영역에서는 양방향 움직임 추정 방법을 이용하여 보간한다. 알고리즘의 성능을 평가하기 위하여 원본 프레임과 제안한 알고리즘을 이용하여 보간한 프레임 사이의 PSNR을 측정하였다. 그 결과, 화질이 기존 알고리즘보다 약 2dB 정도 개선되었으며, 블록화 현상과 몽롱화 현상이 감소한 것을 확인할 수 있었다.
음성인식의 고속화를 위한 저자들에 의한 기존의 연구에서는 탐색이 진행함에 따라 시간방향의 탐색공간 문턱치를 가변적으로 적용하여 인식률의 저하없이 인식속도를 개선시켰다. 이 방법은 탐색 공간을 효과적으로 줄일 수는 있었으나 문턱치를 결정하기 위해서 여러 번의 사전 실험을 수행하여야 하는 번거러움이 있었다. 이러한 문제점을 해결하기 위하여 본 논문에서는 이전 탐색구간에 대한 최대우도와 후보들의 우도를 이용하여 현재 탐색구간의 문턱치를 탐색이 진행하는 과정에서 자동적으로 구하는 적응 프루닝 문턱치 알고리즘을 제안하였다. 제안한 알고리즘의 유효성을 확인하기 위해 국내 행정단위 시 (도), 구 (군), 동 (읍, 면), 번지를 구성하는 단어로 구성된 주소 인식 시스템에 적용하여 기존의 방법과 제안한 방법을 비교 검토하였다. 인식실험 결과, 연결단어 인식률 96.0%, 단어 인식률이 98.7%인 경우를 기준으로 하였을 때 제안된 방법이 기존의 고정 프루닝과 가변 프루닝 문턱치에 비하여 인식률 저하없이 각각 14.4%와 9.14%의 탐색 공간을 상대적으로 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.
압축 저장된 비디오 스트림들은 사용된 압축 알고리즘의 구조와 화면의 복잡도 등에 따라 다양한 형태의 트래픽 발생 특성으로 인하여, 송신측과 수신측 사이의 자원할당을 어렵게 한다. 본 논문에서는 VoD서비스를 제공하기 위한 단일 서버와 복수개의 클라이언트들이 단일 미디어의 공동망에 연결된 환경에 효과적으로 적용될 수 있는 적응적 대역 평활화 기법을 제안한다. 이를위해 우선, 본 논문은 한 개의 비디오 스트립에 효과적인 대역 평활화 기법으로 기존에 제안된 MVBA알고리즘을 분석한다. 이를 바탕으로 복수개의 클라이언트들이 임의로 서버에게 압축 저장된 비디오 스트립을 요구할 때, 각 클라이언트의 연속적인 복호와 재생을 유지하면서 동시에 다중화된 전송률을 적응적으로 평활화하는 알고리즘올 제안한다. 모의 실험을 통하여 제안된 방식은 기존의 단일 비디오 스트립을 독립적으로 제어하는 기법에 비해, 전송률의 첨두치율, 표준편차, 전송율의 변화 횟수 등의 척도에서 뛰어난 성능 개선을 보인다.
이 논문에서는 디지털 영상 데이터의 가역 부호화 방법을 제안하였다. 정보원 모델을 위하여 인접 화소간의 차분을 이용한 차분모델과 마르코프 모델의 구성법을 보였다. 모델링에서 얻어지는 확률 구간의 변경을 이용한 다치 산술부호화의 고속화 알고리즘을 제시하였다. 제안방식의 성능을 계산량의 비교와 컴퓨터 시뮬레이션을 통하여 평가하였다. 그 결과 상태의 그룹화에 의한 차분모델이 기존의 여러방식에 비하여 적은 계산량으로 동등 이상의 평균부호 길이의 달성할 수 있어 효과적임을 알 수 있었다. 또한 제안한 고속화 방식은 차분모델에 적용이 용이하며 128계조를 갖는 영상에 있어서 평균 5배 이상의 고속효과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.