• Title/Summary/Keyword: 적응형 퍼지-칼만

Search Result 6, Processing Time 0.025 seconds

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

An Approach of Ultra-Precision Positioning System using Adaptive Fuzzy-Kalman Filter Observer (적응형 퍼지-칼만 필터 기반의 초정밀 위치 결정 시스템 제어)

  • Choi, In-Sung;Choi, Seung-Ok;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.221-222
    • /
    • 2007
  • 본 논문에서는 초정밀 위치 결정 시스템에서 보다 정확한 제어를 위한 새로운 제어기를 설계한다. 외란을 고려한 시스템의 경우, 환경이 달라질 때마다 측정 노이즈를 정확하게 알아내기란 쉽지 않다. 따라서 측정 장치의 정확성을 나타낼 수 있도록 칼만 필터추정기와 퍼지 이론을 이용하여 정확한 측정 오차값을 구한다. 이때, 파라미터 불확실성과 의란에 강인한 제어를 위해 슬라이딩 모드 제어기와 LQ 최적 제어기가 적용된다. 최종적으로, 제안된 제어기와 시간 최적 제어기의 성능비교를 통하여 보다 강인하고 안정된 성능개선을 증명한다.

  • PDF

Distance Estimation Method using Enhanced Adaptive Fuzzy Strong Tracking Kalman Filter Based on Stereo Vision (스테레오 비전에서 향상된 적응형 퍼지 칼만 필터를 이용한 거리 추정 기법)

  • Lim, Young-Chul;Lee, Chung-Hee;Kwon, Soon;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.108-116
    • /
    • 2008
  • In this paper, we propose an algorithm that can estimate the distance using disparity based on stereo vision system, even though the obstacle is located in long ranges as well as short ranges. We use sub-pixel interpolation to minimize quantization errors which deteriorate the distance accuracy when calculating the distance with integer disparity, and also we use enhanced adaptive fuzzy strong tracking Kalman filter(EAFSTKF) to improve the distance accuracy and track the path optimally. The proposed method can solve the divergence problem caused by nonlinear dynamics such as various vehicle movements in the conventional Kalman filter(CKF), and also enhance the distance accuracy and reliability. Our simulation results show that the performance of our method improves by about 13.5% compared to other methods in point of root mean square error rate(RMSER).

A DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the states of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

Implementation of Intelligent Expert System for Color Matching (칼라 매칭을 위한 지능형 전문 시스템의 구현)

  • Jang, Kyung-Won;Lee, Jong-Seok;Ahn, Tae-Chon;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2768-2770
    • /
    • 2001
  • 본 논문은 지능형 알고리즘과 이미지 프로세싱 방법을 결합한 새로운 방법으로 칼라 매칭 시스템에 구현한다. 칼라 매칭 시스템은 이미지 프로세싱을 이용하여 칼라의 RGB 데이터를 분석한 후 얻어진 색상정보를 가지고 사용자가 원하는 칼라는 구현하는 시스템이다. 칼라 매칭 시스템의 모델링에 이용되는 지능형 모델은 퍼지 추론과 적응 퍼지 추론 시스템(Adaptive Neuro-Fuzzy Inference System: ANFIS)이며, 최소 자승법을 기반으로 한 회귀 다항식과 비교하여 제안된 지능형 모델에 대한 성능과 실용성을 검증한 후 델파이를 이용하여 구현하였다.

  • PDF

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.