• Title/Summary/Keyword: 적응형 뉴로-퍼지 시스템

Search Result 11, Processing Time 0.021 seconds

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Chronic Stress Evaluation using Neuro-Fuzzy (뉴로-퍼지를 이용한 만성적인 스트레스 평가)

  • ;;;;;;;Hiroko Takeuchi;Haruyuki Minamitani
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • The purpose of this research was to evaluate chronic stress using physiological parameters. Wistar rats were exposed to the sound stress for 14 days. Biosignals were acquired hourly. To develop a fuzzy inference system which can integrate physiological parameters. the parameters of the system were adjusted by the adaptive neuro-fuzzy inference system. Of the training dataset, input dataset was the physiological parameters from the biosignals and output dataset was the target values from the cortisol production. Physiological parameters were integrated using the fuzzy inference system. then 24-hour results were analyzed by the Cosinor method. Chronic stress was evaluated from the degree of circadian rhythm disturbance. Suppose that the degree of stress for initial rest period is 1. Then. the degree of stress after 14-day sound stress increased to 1.37, and increased to 1.47 after the 7-day recovery period. That is, the rat was exposed to 37%-increased amount of stress by the 14-day sound and did not recover after the 7-day recovery period.

Prediction of Building Construction Project Costs Using Adaptive Neuro-Fuzzy Inference System(ANFIS) (적응형 뉴로-퍼지(ANFIS)를 이용한 건축공사비 예측)

  • Yun, Seok-Heon;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • Accurate cost estimation in the early stages of a construction project is critical to the successful execution of the project. In this study, an ANFIS model was presented to predict construction costs in the early stages of a construction project. To increase the usability of the model, open construction cost data was used, and a model using limited information in the early stage of the project was presented. We analyzed existing studies related to ANFIS to identify recent trends, and after reviewing the basic structure of ANFIS, presented an ANFIS model for predicting conceptual construction costs. The variation in prediction performance depending on the type and number of membership functions of the ANFIS model was analyzed, the model with the best performance was presented, and the prediction accuracy of representative machine learning models was compared and analyzed. Through comparing the ANFIS model with other machine learning models, it was found to show equal or better performance, and it is concluded that it can be applied to predicting construction costs in the early stage of a project.

The power regulation of a High-Frequency Induction Heating System using Neuro-Fuzzy controller (뉴로퍼지제어기를 이용한 고주파 유도가열기의 정전력제어)

  • 장종승;설재훈;박종오;임영도;최부귀
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.41-44
    • /
    • 1997
  • 본 논문에서는 뉴로퍼지제어기를 이용한 유도가열기의 시변부하에 대한 적응 정전력 제어를 하고자 한다. 유도가열기의 정전력 조절을 위해 IGBT를 사용한 위상전이형 펄스폭변조(PWM)와 PLL에 의한 부하공진주파수 추종형 펄스 주파수변수(PFM)가 조절되는 공진 고주파 인버터를 유용한 유도가열기를 설명하고, 실험 제작된 유도가열기에서의 부하에 대한 규정 전력 추종이 잘되고 있음이 실제적으로 논증되어졌다.

  • PDF

A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function (벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구)

  • 변오성;조수형;문성용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • In this paper, it could improved on the arbitrary nonlinear function learning approximation which have the wavelet neural network based on Adaptive Neuro-Fuzzy Inference System(ANFIS) and the multi-resolution Analysis(MRA) of the wavelet transform. ANFIS structure is composed of a bell type fuzzy membership function, and the wavelet neural network structure become composed of the forward algorithm and the backpropagation neural network algorithm. This wavelet composition has a single size, and it is used the backpropagation algorithm for learning of the wavelet neural network based on ANFIS. It is confirmed to be improved the wavelet base number decrease and the convergence speed performances of the wavelet neural network based on ANFIS Model which is using the wavelet translation parameter learning and bell type membership function of ANFIS than the conventional algorithm from 1 dimension and 2 dimension functions.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS) (적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구)

  • Tak, Kil Hun;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.