• Title/Summary/Keyword: 적응적 점층 학습

Search Result 3, Processing Time 0.017 seconds

Application of an Adaptive Incremental Classifier for Streaming Data (스트리밍 데이터에 대한 적응적 점층적 분류기의 적용)

  • Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1396-1403
    • /
    • 2016
  • In streaming data analysis where underlying data distribution may be changed or the concept of interest can drift with the progress of time, the ability to adapt to concept drift can be very powerful especially in the process of incremental learning. In this paper, we develop a general framework for an adaptive incremental classifier on data stream with concept drift. A distribution, representing the performance pattern of a classifier, is constructed by utilizing the distance between the confidence score of a classifier and a class indicator vector. A hypothesis test is then performed for concept drift detection. Based on the estimated p-value, the weight of outdated data is set automatically in updating the classifier. We apply our proposed method for two types of linear discriminant classifiers. The experimental results on streaming data with concept drift demonstrate that the proposed adaptive incremental learning method improves the prediction accuracy of an incremental classifier highly.

A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data (컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법)

  • Kim, Young-Deok;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.842-853
    • /
    • 2017
  • Streaming data is a sequence of data samples that are consistently generated over time. The data distribution or concept can change over time, and this change becomes a factor to reduce the performance of a classification model. Adaptive incremental learning can maintain the classification performance by updating the current classification model with the weight adjusted according to the degree of concept drift. However, selecting the proper weight value depending on the degree of concept drift is difficult. In this paper, we propose a dynamic ensemble method based on adaptive weight adjustment according to the degree of concept drift. Experimental results demonstrate that the proposed method shows higher performance than the other compared methods.

An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates (스트리밍 데이터에서 확률 예측치를 이용한 효과적인 개념 변화 탐지 방법)

  • Kim, Young-In;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.718-723
    • /
    • 2016
  • In streaming data analysis, detecting concept drift accurately is important to maintain the performance of classification model. Error rates are usually used for concept drift detection. However, by describing prediction results with only binary values of 0 or 1, useful information about a behavior pattern of a classifier can be lost. In this paper, we propose an effective concept drift detection method which describes performance pattern of a classifier by utilizing probability estimates for class prediction and detects a significant change in a classifier behavior. Experimental results on synthetic and real streaming data show the efficiency of the proposed method for detecting the occurrence of concept drift.