• Title/Summary/Keyword: 적응적 분류기

Search Result 95, Processing Time 0.024 seconds

Application of an Adaptive Incremental Classifier for Streaming Data (스트리밍 데이터에 대한 적응적 점층적 분류기의 적용)

  • Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1396-1403
    • /
    • 2016
  • In streaming data analysis where underlying data distribution may be changed or the concept of interest can drift with the progress of time, the ability to adapt to concept drift can be very powerful especially in the process of incremental learning. In this paper, we develop a general framework for an adaptive incremental classifier on data stream with concept drift. A distribution, representing the performance pattern of a classifier, is constructed by utilizing the distance between the confidence score of a classifier and a class indicator vector. A hypothesis test is then performed for concept drift detection. Based on the estimated p-value, the weight of outdated data is set automatically in updating the classifier. We apply our proposed method for two types of linear discriminant classifiers. The experimental results on streaming data with concept drift demonstrate that the proposed adaptive incremental learning method improves the prediction accuracy of an incremental classifier highly.

An Adaptive Flow Classifier for IP/ATM Hybrid System (IP/ATM 하이브리드 시스템에 대한 적응형 플로우 분류기)

  • Jo, Dae-U;Lee, Seon-U;Byeon, Tae-Yeong;Han, Gi-Jun;Jang, Seong-Sik;Jeong, Yeon-Kwae
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.1
    • /
    • pp.173-181
    • /
    • 2001
  • 최근 인터넷 사용자의 증가와 서비스의 다양화 그리고 이에 따른 고속 인터넷 엑세스 기술의 도입으로 인터넷 트래픽의 급격한 증가를 초래하고 있다. 이러한 이유로 인터넷 패킷 전달에 2계층 스위칭 기술과 3계층 라우팅 기술을 접목한 IP/ATM Hybrid system이 등장하게 되었다. 이러한 시스템에서의 중요한 자원은 2계층 스위칭 기술을 사용하기 위한 유한한 VCI/VPI 공간이다. 이 VCI/VPI 공간을 효과적으로 관리하기 위한 방안으로 많은 방안들이 제시되고 있다. 특히 흐름 기반의 IP/ATM Hybrid system에서의 흐름 분류기를 사용함으로서 VCI/CPI 공간을 관리하고 있다. 본 논문에서 주장하는 적응형X/Y 분류기가 유한한 VCI/VPI 공간을 효율적으로 관리하기 위한 방안임을 제시하고 이에 대하여 실험을 통하여 성능 평가를 실시하였다 특히 동일한 VCI/VPI 공간에서 X/Y분류기와의 비교실험에서 적응형 X/Y 분류기의 성능이 높은 스위칭 율로 나타나고 있다. 즉 적응형 X/Y 분류기가 X/Y분류기에 비하여 효율적으로 VCI/VPI를 관리함을 보이고 있다

  • PDF

Fuzzy Behavior Knowledge Space for Integration of Multiple Classifiers (다중 분류기 통합을 위한 퍼지 행위지식 공간)

  • 김봉근;최형일
    • Korean Journal of Cognitive Science
    • /
    • v.6 no.2
    • /
    • pp.27-45
    • /
    • 1995
  • In this paper, we suggest the "Fuzzy Behavior Knowledge Space(FBKS)" and explain how to utilize the FBKS when aggregating decisions of individual classifiers. The concept of "Behavior Knowledge Space(BKS)" is known to be the best method in the context that each classifier offers only one class label as its decision. However. the BKS does not considers measurement value of class label. Furthermore, it does not allow the heuristic knowledge of human experts to be embedded when combining multiple decisions. The FBKS eliminates such drawbacks of the BKS by adapting the fwzy concepts. Our method applies to the classification results that contain both class labels and associated measurement values. Experimental results confirm that the FBKS could be a very promising tool in pattern recognition areas.

  • PDF

A Feature Selection Technique for Multi-lingual Character Recognition (TV 제어 메뉴의 다국적 언어 인식을 위한 특징 선정 기법)

  • Kang, Keun-Seok;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.199-202
    • /
    • 2005
  • TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 다국적 언어의 문자 인식은 표준패턴의 구조적 분석이 쉽지 않을 뿐만 아니라 학습패턴 집합의 규모와 특징의 수가 증가함으로 인하여 특징추출 및 인식 과정에서 방대한 계산량이 요구된다. 이에 본 연구에서는 학습 데이터에 포함되는 다량의 특징 집합으로부터 인식에 필요한 효과적인 특징을 선별함으로써 패턴 분류기의 효율성을 개선하기 위한 방법론을 고찰한다. 이를 위하여 수정된 형태의 Adaboost 기법을 제안하고 이를 적용한 실험 결과로부터 그 유용성을 고찰한다. 제안된 알고리즘은 초기의 특징 집합을 취약한 성능을 갖는 다수의 분류기(classifier)로서 고려하며, 이로부터 반복학습을 통하여 개선된 분류기를 점진적으로 선별해 나가게 된다. 학습의 원리는 주어진 학습패턴 집합에 기초하여 일종의 교사학습(supervised learning) 방식으로 이루어진다. 각 패턴에 할당된 가중치 값은 각 단계에서 산출되는 분류결과에 따라 적응적으로 수정되어 반복학습이 진행됨에 따라 점차 보완적 성능을 갖는 분류기를 선택할 수 있게 한다. 즉, 주어진 각 학습패턴에 대하여 초기에 균등한 가중치가 부여되며, 반복학습의 각 단계에서 적용되는 분류기의 출력을 분석하여 오분류된 패턴의 가중치 분포를 증가시켜 나간다. 본 연구에서는 실제 응용으로서 OSD 메뉴검증 시스템을 대상으로 제안된 이론을 적용하고 그 타당성을 평가한다.

  • PDF

Improved Detecting Schemes for Micro-Electronic Devices Based on Adaptive Hybrid Classification Algorithms (적응형 복합 분류 알고리즘을 이용한 초소형 전자소자 탐지 향상 기법)

  • Kim, Kwangyul;Lim, Jeonghwan;Kim, Songkang;Cho, Junkyung;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.504-511
    • /
    • 2013
  • This paper proposes improved detection schemes for concealed micro-electronic devices using clustering and classification of radio frequency harmonics in order to protect intellectual property rights. In general, if a radio wave with a specific fundamental frequency is propagated from the transmitter of a classifier to a concealed object, the second and the third harmonics will be returned as the radio wave is reflected. Using this principle, we exploit the fuzzy c-means clustering and the ${\kappa}$-nearest neighbor classification for detecting diverse concealed objects. Simulation results indicate that the proposed scheme can detect electronic devices and metal devices in various learning environments by efficient classification. Thus, the proposed schemes can be utilized as an effective detection method for concealed micro-electronic device to protect intellectual property rights.

Convex-Set-Based Classification (컨벡스 집합을 기반으로한 클래시피케이션)

  • Park, Sang-Gouk;Yeo, Hee-Joo;Kim, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.636-639
    • /
    • 1999
  • 본 논문에서는 기존의 FMMCNN이나 Fuzzy ART에서 Hyperbox를 정형으로 이용한 방법보다 적응적으로 분류가 가능한 컨벡스 집합을 기반으로 한 새로운 클래시피케이션 기법을 제안하였다. 컨벡스 다면체를 적응적으로 생성하기 위하여 퍼지 뉴럴 네트웍 분류기를 구성하고, 이를 이용한 패턴 클래스들을 생성하였다. 마지막으로, FMMCNN과의 다양한 시뮬레이션을 수행하여 본 논문의 우수성을 입증하였다.

  • PDF

Backlit Region Detection Using Adaptively Partitioned Block and Fuzzy C-means Clustering for Backlit Image Enhancement (역광 영상 개선을 위한 퍼지 C-평균 분류기와 적응적 블록 분할을 사용한 역광 영역 검출)

  • Kim, Nahyun;Lee, Seungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.124-132
    • /
    • 2014
  • In this paper, we present a novel backlit region detection and contrast enhancement method using fuzzy C-means clustering and adaptively partitioned block based contrast stretching. The proposed method separates an image into both dark backlit and bright background regions using adaptively partitioned blocks based on the optimal threshold value computed by fuzzy logic. The detected block-wise backlit region is refined using the guided filter for removing block artifacts. Contrast stretching algorithm is then applied to adaptively enhance the detected backlit region. Experimental results show that the proposed method can successfully detect the backlit region without a complicated segmentation algorithm and enhance the object information in the backlit region.

Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map (구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF

Web Documents Classification with Fuzzy Integration of Multiple Structure-Adaptive Self-Organizing Maps (다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 문서 분류)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.371-373
    • /
    • 2003
  • 웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.

  • PDF

A Multiple SVM Classifier Combined With Neural Networks (신경망을 결합한 다중 SVM 분류기)

  • 고재필;김승태;김은주;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF