• Title/Summary/Keyword: 적응적 돌연변이 연산

Search Result 4, Processing Time 0.018 seconds

ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed (ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘)

  • Choi, Tae Jong;Ahn, Chang Wook
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1090-1098
    • /
    • 2014
  • In this paper, an improved ACDE (Adaptive Cauchy Differential Evolution) algorithm with faster convergence speed, called ACDE2, is suggested. The baseline ACDE algorithm uses a "DE/rand/1" mutation strategy to provide good population diversity, and it is appropriate for solving multimodal optimization problems. However, the convergence speed of the mutation strategy is slow, and it is therefore not suitable for solving unimodal optimization problems. The ACDE2 algorithm uses a "DE/current-to-best/1" mutation strategy in order to provide a fast convergence speed, where a control parameter initialization operator is used to avoid converging to local optimization. The operator is executed after every predefined number of generations or when every individual fails to evolve, which assigns a value with a high level of exploration property to the control parameter of each individual, providing additional population diversity. Our experimental results show that the ACDE2 algorithm performs better than some state-of-the-art DE algorithms, particularly in unimodal optimization problems.

Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation (코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.694-705
    • /
    • 2010
  • The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.

Improving Efficiency of GP by Adaptive Node Selection for Bipedal Locomotion with Evolutionary Algorithm (2족 보행운동 생성을 위한 적응적 노드 선택에 의한 유전적 프로그래밍의 성능 향상)

  • 옥수열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.165-168
    • /
    • 2004
  • 본 연구에서는 근골격계로 구성된 신체 역학계와 신경 진동자로 구성된 신경계의 상호작용에 의해서 자율적인 2족 보행운동 생성하려고 하고 있다. 이를 위해서는 역학계와 신경계의 않은 파라메트(Parameter)의 조절이 필요하다 본 연구에서는 유전적 프로그래밍(GP)을 이용하여 파라메트의 자동조절 수법을 제안하였다. GP는 문제를 해결하기 위한 계산 프로그래밍을 탐색하는 진화형 탐색 알고리즘으로, GP를 이용해서 문제해결을 행하기 위해서는 노드의 선택이 매우 중요하다. 그러나 대상문제에 대한 충분한 정보가 없는 경우에는 노드를 용장성 있게 설계하게 되어, 이로 인한 탐색공간의 확장으로 GP에 대한 탐색성능의 저하를 초래한다. 본 논문에서는 이러한 문제를 해결하기 위해서 용장성 노드 집합으로부터 유용한 노드를 획득하기 위해 제안한 수법을 2족 보행운동 생성 시스템에 적용하기 전에 사전 평가로서 기호회귀(Symbolic Regression)문제에 적용하여 실험을 통해 제안 수법의 타당성과 탐색성능 향상의 효과에 관해서 논하고자 한다.

  • PDF

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.