• Title/Summary/Keyword: 적응적 가중치 기반

Search Result 148, Processing Time 0.041 seconds

실시간 시스템에서의 빠른 스테레오 매칭을 위한 다양한 접근 알고리즘의 성능비교 (Comparison with various approach algorithms for Fast Stereo Matching in Real-time system)

  • 김호영;이성원
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.303-304
    • /
    • 2011
  • 영역기반 스테레오 매칭의 분야에서 최근 인간의 시각체계(Human Visual System)에 기반하여 영역내의 밝기값과 거리값에 따라 적응적으로 가중치를 부여하는 적응적 영역 가중치(Adaptive Support-Weight) 방법이 좋은 매칭 결과를 보이고 있다. 하지만 이 방법은 영역 윈도우의 크기가 커짐에 따라 기하급수적으로 계산량이 많아지는 단점을 보이고 있다. 이에 Bilateral filter 수식으로 근사화 후 Integral Histogram 기법을 적용하여 영역 윈도우의 크기에 상관없이 상수 시간 O(1) 내에 매칭을 수행하는 연구가 진행되었다. 하지만 이 방법은 근사화 과정에서의 원 ASW 수식을 왜곡하기 때문에 매칭 정확도의 손실을 가져오게 된다. 이에 본 논문에서는 Bilateral 접근 방식, Sub-Block 방식 및 적응적 시차 탐색 방식에 대하여 각 방식에서 필요한 메모리 자원과 소모되는 계산량의 비용과 동시에 매칭 결과 정확도 면에서 비교하고 가장 좋은 접근 방식을 도출하고자 한다.

  • PDF

적응적 가중치 보간법과 이산 웨이블릿 변환을 이용한 효율적인 초해상도 기법 (Effective Image Super-Resolution Algorithm Using Adaptive Weighted Interpolation and Discrete Wavelet Transform)

  • 임종명;유지상
    • 한국통신학회논문지
    • /
    • 제38A권3호
    • /
    • pp.240-248
    • /
    • 2013
  • 본 논문에서는 이산 웨이블릿 변환(Discrete Wavelet Transform: DWT)과 적응적 가중치 보간법을 이용한 효율적인 초해상도 기법을 제안한다. 기존의 단일 영상에 적용되는 초해상도 기법들의 경우, 영상에서의 고주파 대역을 찾기 위하여 확률 기반의 방법들을 많이 사용하였다. 따라서 연산의 복잡도가 증가하고 처리시간 증가라는 문제점을 발생시킨다. 제안된 기법에서는 고주파 대역을 찾기 위한 방법으로 DWT와 적응적 가중치 보간법을 이용한다. 먼저 주어진 영상에 대하여 DWT를 수행하고, 생성된 고주파 부대역(sub-band)들을 적응적 가중치 보간법을 이용하여 입력 받은 영상과 동일한 크기의 고주파 부대역을 생성한다. 이 부대역들과 입력 받은 영상을 조합하여 이산 웨이블릿 역변환(Inverse DWT : IDWT)을 수행함으로써 고해상도의 영상을 획득하게 된다. 실험을 위하여 원본 영상($512{\times}512$)을 다운 샘플링하여 실험 영상($256{\times}256$)을 획득한다. 실험을 통하여 제안된 기법이 기존의 보간법에 비해 향상된 효율을 보이며, 확률 기반의 기법들과 비슷한 성능을 갖지만 처리시간에서 많은 이득을 보이는 것을 확인할 수 있었다.

색상과 질감정보의 적응적 가중치 기법을 이용한 내용기반 영상검색 (Content-based Image Retrieval using adaptive weight of Color and texture information)

  • 황춘화;김계영;최형일
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.39-42
    • /
    • 2011
  • 본 논문에서는 영상들의 특징들을 추출하여 특징 값들의 비교를 통하여 질의 영상의 유사 영상을 검색하는 방법을 제안한다. 제안하는 방법은 입력 영상들의 색상 히스토그램으로 색상 특징 값들을 추출하고 질감 정보인 에지 정보와 이웃화소간의 공간 관계를 분석하여 질감 특징 값들을 추출하여 저장한 후 질의 이미지의 색상과 질감 특징들을 구하여 비교를 통하여 유사도를 분석하고 결과 영상을 보여준다. 또한 색상과 질감을 혼합하여 사용할 때 적응적으로 가중치를 부여함으로써 가중치가 적합하지 않아 발생하는 오 검출될 현상을 피할 수 있게 되었다. 실험을 통하여 기존의 방법과의 성능을 비교분석하였고 본 방법의 우수성을 입증하였다.

  • PDF

자가 적응 시스템에서의 목표 모델의 동적 가중치 변경에 관한 연구 (A Study on dynamic weight-changing method of goal model for self-adaptive system)

  • 황다솜;이종현;이은석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1354-1357
    • /
    • 2011
  • 자가 적응 시스템은 사람의 직접적인 개입 없이 자율 제어를 통한 자가 최적화 (self-optimization), 자가 치유 (self-healing) 등의 능력이 요구되고, 이러한 시스템은 시스템이 조달된 환경과 시스템 내부 상황을 고려한 적절한 적응 정책과 목표 평가를 통해 시스템의 신뢰성을 보장할 수 있어야 한다. 목표 기반의 자가 제어 시스템은 목표 만족도에 따라 시스템을 자율 제어하기 때문에 목표 기반 자가 적응 시스템에서의 목표 만족도(goal satisfaction) 평가는 매우 중요하지만 기존의 연구들의 목표 만족도 평가 방법에서는 환경 변화가 반영되지 않는다는 한계가 있다. 본 논문에서는 목표 모델에서의 상위 목표에 대한 하위 목표들의 기여도에 따라 가중치를 부여하고 시스템의 외부 환경 변화에 따라 가중치를 동적으로 변경하는 방법을 제안한다. 이를 통해 기존의 목표 평가 방법보다 사용자의 요구가 잘 반영되고 신뢰성 높은 평가가 가능하다.

파티클 스웜 최적화에서의 가중치 조절에 기반한 강인한 객체 추적 알고리즘 (Robust Object Tracking based on Weight Control in Particle Swarm Optimization)

  • 강규창;배창석
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.15-29
    • /
    • 2018
  • 본 논문에서는 기존 파티클 스웜 최적화를 기반으로 추적 대상 객체의 이동 궤적을 이용하는 객체 추적기에서 시간 정보 활용의 문제점을 개선한 강인한 객체 추적 알고리즘을 제안한다. 제안하는 알고리즘은 추적 대상 객체와 유사한 특징을 가지는 변위들의 집합에 대한 위치들의 온라인 업데이트와 추적을 가능하게 한다. 객체들의 중첩을 검출하고 추적 대상의 위치를 결정하기 위해 궤적 정보와 변위들의 집합을 기반으로 적응적 파라미터를 사용하는 규칙기반 접근을 사용한다. 기존 알고리즘들과 비교해보면 제안하는 접근법은 가용한 정보를 복합적으로 사용함으로써 각종 임계값에 대한 적응적 조정을 가능하게 한다. 또한, 파티클 스웜 최적화에서 발산에 의한 손실과 불완전한 수렴의 문제를 해결하기 위해 효율적인 가중치 조절 함수를 제안하고 있다. 제안하는 가중치 조절 함수는 파티클들이 최적의 해에 수렴하기 이전에 전체 프레임 영역에서 탐색할 수 있도록 한다. 유사한 특징 조합을 가지는 다중 객체가 존재하는 환경에서 제안 알고리즘을 테스트한 결과, 기존 스웜 최적화 기반의 객체 추적기들에 비해 기존 유사 변위들에 대한 잘못된 추적을 현저히 줄이는 것을 확인할 수 있었다.

사용자 중심 에이전트 학습을 위한 만유인력 모델기반 연관 객체 가중치 기법 (Universal Gravity Model-Based Associate Object Weighting for User-Centric Agent Learning)

  • 문현정;김교정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.88-90
    • /
    • 2001
  • 정보여과 에이전트는 자체의 적응성(adaptability)과 자율성(autonomy)을 특징으로 사용자의 선호도와 관심을 학습하여 사용자 프로파일을 지식베이스의 일부로 구축하는 기능을 수행한다. 이러한 사용자 프로파일은 사용자의 학습의도에 맞게 지식을 탐색하고 축적하는 적응성(adaptability)을 가져야 한다. 본 논문에서는 지능적 정보여과 에이전트가 사용자의 선호도와 관심을 학습하여 적응적인 사용자 프로파일을 구축하기 위한 기법으로서, 사용자가 제시한 학습예제로써의 웹 문서들로부터 사용자의 학습의도를 내포한 질의어를 중심으로 연관 지식을 탐색하여 추출하는 웹 도큐먼트 기반 사용자 중심 연된 객체 추출과 만유인력 모델을 기반으로 한 연관 객체 관계성 가중치 기법을 제시한다.

  • PDF

적응적 가중치를 이용한 RAM 기반 누적 신경망 (A RAM-based Cumulative Neural Net with Adaptive Weights)

  • 이동형;김성진;권영철;이수동
    • 한국멀티미디어학회논문지
    • /
    • 제13권2호
    • /
    • pp.216-224
    • /
    • 2010
  • RAM 기반 신경망은 빠른 처리 속도와 하드웨어 구현의 용이성 등의 장점을 가지고 있지만 반면에 메모리의 포화 문제, 반복학습, 일반화 패턴 추출의 어려움 등의 단점도 가지고 있다. 이런 단점을 극복하기 위해 누적 다중 판별자를 가지는 3차원 뉴로 시스템(3DNS) 등이 제안되었지만 메모리 포화 문제는 해결하지는 못하였다. 본 논문에서는 메모리 포화 문제를 해결하기 위하여 적응적 가중치를 가지는 AWN (Adaptive Weight Neuron)을 사용한 적응적 가중치 누적 신경망(AWCNN)을 제안한다. 제안된 모델은 AWN으로 3DNS을 개선하여 인식률과 메모리 포화 문제 해결을 향상하였다. 제안된 시스템의 평가는 전처리 과정 없이 NIST의 MNIST에서 제공하는 자료를 이용하여 실험하였다. AWCNN은 3DNS보다 1.5%이상의 향상된 인식률을 보였고 일반화 패턴을 이용한 인식에서는 모든 입력 패턴의 교육된 것과 비슷한 성능을 얻었다.

적응적 가중치와 문턱치를 이용한 의료영상의 화질 향상 (Medical Image Enhancement Using an Adaptive Weight and Threshold Values)

  • 김승종
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.205-211
    • /
    • 2012
  • 본 논문에서는 웨이블릿 변환과 Haar 변환을 기반으로 적응적 문턱치와 가중치를 이용하여 의료영상의 화질을 개선하는 알고리즘을 제안한다. 첫째, 화질이 저하된 의료영상에 대해 웨이블릿 변환을 수행하고 분해된 고주파 밴드에 대해 Haar 변환을 수행한다. 둘째, 고주파 각 밴드에 대해 적응적 문턱치를 이용하여 잡음을 제거한다. 셋째, 잡음이 제거된 고주파 밴드에 대해 적응적인 가중치를 이용하여 계수를 향상한 후, Haar 역변환 및 웨이블릿 역변환을 수행하여 복원영상을 얻는다. 마지막 단계에서는 복원된 영상의 화소 값의 범위가 좁아졌으므로 비선형 히스토그램 평활을 이용하여 화소 값의 범위를 조절하고 명암 대비가 좋은 향상된 영상을 얻는다.

적응적 가중치를 이용한 스테레오 정합 기법 (Adaptive weight approach for stereo matching)

  • 윤희주;황영철;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 지능정보 및 응용 학술대회
    • /
    • pp.73-76
    • /
    • 2008
  • 본 논문에서는 스테레오 영상의 대응점을 찾기 위한 영역 기반 스테레오 정차 기법을 제안한다. 영역 기반 스테레오 정합의 주된 문제점은 윈도우 크기에 따라 다른 결과를 초래한다는 것이다. 지금까지 대부분의 영역기반 정합 기법은 윈도우의 크기를 반복적으로 갱신하는 방법을 사용하였으나, 이는 초기 시차(disparity)에 매우 민감하며 계산 비용도 많이 든다. 이러한 문제를 해결하기 위해, 본 논문에서는 스테레오 영상의 특징 정보를 이용하여 가중치를 생성하고, 각 영상의 대응점을 탐색하여 정합한다. 먼저, 평행하게 설치된 두 대의 카메라로부터 획득된 영상에 대한 에지를 검출하여 특징점을 추출한다. 이를 이용하여 두 영상간의 상관관계를 구하여 가중치 함수를 생성하고, 각 영상에 대한 가중치를 적용한 후, 기준영상에 대한 대응점을 찾아 정합한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험결과 다양한 영상에서도 적응적인 가중치를 생성함으로써 향상된 결과를 보였다.

  • PDF

시간 가중치 기반 효율적인 최적 경로 탐색 기법 연구 (Search Algorithm for Efficient Optimal Path based on Time-weighted)

  • 허유성;김태우;안용학
    • 한국융합학회논문지
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2020
  • 본 논문에서는 시간 가중치를 적용하여 각 노드들 간의 중간지점까지의 최적 경로 탐색 기법을 제안한다. 중간지점을 이용하는 서비스들은 주로 사용자들의 위치를 기반으로 하여 제공한다. 위치 기반 탐색 방법은 단순히 위치에 대해서만 고려하기 때문에 시간의 측면에서 효율적이지 못하다는 문제점이 있다. 제안된 방법은 기존의 위치 기반 탐색 방법의 문제점을 해결하기 위해 사용자들의 위치와 중간지점까지의 소요시간을 반영함으로써 각 노드와 중간지점까지의 가중치를 설정하고, 이를 활용하여 최적의 경로를 탐색할 수 있다. 또한, 탐색의 효율성을 증대하기 위해 주어지는 정보들에 적응적으로 가중치를 설정함으로써 높은 정확성을 갖도록 한다. 실험 결과, 제안된 방법은 기존 방법에 비해 중간지점까지의 최적 경로를 효과적으로 찾을 수 있음을 확인하였다.