• 제목/요약/키워드: 적응적 가중치 기반

검색결과 148건 처리시간 0.02초

상황인식기반 선형회귀의 적응적 가중치를 적용한 클러스터링 (Clustering with Adaptive weighting of Context-aware Linear regression)

  • 이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.271-273
    • /
    • 2021
  • 본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.

  • PDF

적응적 가중치를 사용한 LMSE 최적화 기반의 심전도 개인 인식 방법 (ECG Identification Method Using Adaptive Weight Based LMSE Optimization)

  • 김석호;강현수
    • 한국콘텐츠학회논문지
    • /
    • 제15권4호
    • /
    • pp.1-8
    • /
    • 2015
  • 본 논문에서는 적응적 가중치를 사용한 Least Mean Square Error(LMSE) 최적화 기반의 심전도 개인 인식 방법을 제안하다. 제안하는 방법은 잡음 제거를 위한 전처리과정, 평균 심전도 신호 및 표준편차를 추출한다. 그리고 추출된 정보들을 DB에 저장하고 이를 적응적 가중치로 사용하여 개인 인식에 사용한다. 적응적 가중치는 두 가지를 사용하는데 첫 번째 적응적 가중치는 입력 신호의 표준편차의 역수이고, 두번째 적응적 가중치는 DB에 저장된 사람들의 평균 심전도 신호간의 표준편차에 비례한 것이다. 제안한 방법으로 실험한 결과 32명에 대해서 100%의 인식률을 보였다.

적응적 가중치 감소항을 적용한 Optimal Brain Surgeon (Optimal Brain Surgeon with Adaptive Weight Decay Term)

  • 이현진;지태창;박혜영;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.305-307
    • /
    • 2000
  • 본 논문에서는 다층 퍼셉트론 신경망에서 연결선 수를 최소로 하면서 일반화 성능을 향상시키기 위해 가장 널리 쓰여지고 있는 Optimal Brain Surgeon을 이용한 프루닝(pruning)을 기반으로 하여 오차 함수의 가중치 감소항을 추가시키는 방법을 사용한다. 이때 학습 및 프루닝의 성능에 많은 영향을 미치는 가중치 감소항의 방영정도를 베이시안 테크닉에 기반하여 적응적으로 최적화 하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 벤치마크 데이터를 이용하여 실험을 수행하였다. 순수한 OBS 방법과 고정된 반영정도를 가진 가중치 감소항을 추가시킨 OBS, 그리고 제안하는 적응적 가중치 감소항을 적용한 OBS 방법을 비교하여 제한하는 방법이 기존의 두 방법에 비해 신경망 구조의 최적화 능력이 뛰어남을 확인할 수 있었다.

  • PDF

가중치 분포 특성을 이용한 Eigenvoice 기반 고속화자적응 (Rapid Speaker Adaptation Based on Eigenvoice Using Weight Distribution Characteristics)

  • 박종세;김형순;송화전
    • 한국음향학회지
    • /
    • 제22권5호
    • /
    • pp.403-407
    • /
    • 2003
  • 최근 고속화자적응 기법으로 eigenvoice 방식이 많이 사용되고 있다. Eigenvoice 적응방식에서도 적응화자의 적응 데이터가 매우 적은 경우에는 적절한 가중치의 추정이 어렵기 때문에 적응 데이터가 어느 정도 많은 경우에 비해 인식성능 향상이 크지 않다. 본 논문에서는 적응 데이터가 적을 때의 성능향상을 위하여 eigenvoice의 가중치 분포 특성을 이용한 eigenvoice 기반 고속화자적응을 제안한다. PBW 452 데이터베이스를 사용한 어휘독립 단어인식 실험 결과에서 가중치 문턱치(threshold) 적용 방식을 사용하여 적응 데이터가 매우 적은 경우의 상대적인 성능 저조 문제를 완화시켰다. 적응단어를 단 1개만 사용한 경우 가중치 문턱치 적용 방식을 사용하여 단어 오인식률을 9-18% 정도 감소시켰다.

2차원 히스토그램 기반 적응적 가중치 커널을 이용한 효율적 대비 강화 (Efficient Contrast Enhancement Using an Adaptive Weighted Kernel based on 2-D Histogram)

  • 위경철;김창익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.85-88
    • /
    • 2016
  • 대비 강화는 컴퓨터 비젼, 영상 처리, 패턴인식에서 전처리 과정으로 이용되며 그 역할이 중요하다. 2차원 히스토그램을 이용한 대비 강화 방법은 인접 픽셀 간의 정보를 이용해 대비를 강화시키기 때문에 1차원 히스토그램을 이용한 대비 강화 방법보다 우수하다. 2차원 히스토그램 기반 알고리즘에서 2차원 히스토그램의 인접픽셀 간의 화소값 차이에 따라 가중치를 주는 커널 (kernel)이 사용된다. 이러한 커널은 영상 마다 같은 가중치를 곱해주기 때문에 원하는 대비를 시켜주지 못하는 단점이 있다. 이에 본 논문은 2차원 히스토그램을 1차원 히스토그램으로 정사영을 시켜 평균값과 표준편차를 통해 2차원 히스토그램을 통계학적으로 분석한다. 그리고 선형회귀법을 이용하여 2차원 히스토그램의 통계적 정보에 따른 적응적 가중치 커널을 제안하고, 이를 이용하여 효율적 대비 강화를 한다. 실험 결과를 통해 제안하는 방법이 기존의 알고리즘에 비해 대비 향상 성능이 더 우수한 방법임을 확인하였다.

  • PDF

스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법 (An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images)

  • 김호영;이성원
    • 방송공학회논문지
    • /
    • 제16권6호
    • /
    • pp.902-915
    • /
    • 2011
  • 영역기반 스테레오 매칭 분야에서 최근 인간의 시각체계(Human Visual System)에 기반하여 영역내의 밝기값과 거리값에 따라 적응적으로 가중치를 부여하는 적응적 영역 가중치(Adaptive Support-Weight, ASW) 방법이 좋은 매칭 결과를 보이고 있다. 그러나 이 방법은 좋은 매칭 결과에 비해서 많은 연산비용을 필요로 하게 되고, 매칭의 실시간 시스템화에 큰 장애요소로 작용한다. 이에 Bilateral filter 수식으로 근사화 후 Integral Histogram 기법을 적용하여 영역 윈도우의 크기에 상관없이 상수 시간 O(1) 내에 매칭을 수행하는 연구가 진행되었다. 하지만 이 방법은 근사화 과정에서의 원 ASW 수식을 왜곡하기 때문에 매칭 정확도의 손실을 가져오게 된다. 본 논문에서는 적응적 영역 가중치 알고리즘의 매칭 정확도를 유지하면서 적응적 영역 가중치 알고리즘의 계산 비용을 줄이는 알고리즘을 제안한다. 이를 위해 영역내의 픽셀을 그룹화하여 근사화된 매칭을 수행하는 Sub-Block 방법과 영상의 에지 정보에 따라 적응적으로 시차 탐색 범위를 조정하는 방법을 제안한다. 결과적으로 제안된 기법은 기존 방식보다 좋은 매칭 정확도를 유지하면서도 효율적으로 계산 수행 시간을 줄이게 된다.

얼굴교체 시스템을 위한 적응적 블렌딩 방법 (Adaptive Face Blending for Face Replacement System)

  • 장성걸;김창섭;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.133-135
    • /
    • 2018
  • 본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.

  • PDF

적응적 가중치를 사용한 비국소적 영상 잡음 제거 기법 (Nonlocal Image Denoising Algorithm Using Adaptive Weights)

  • 이철;이철우;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.394-395
    • /
    • 2010
  • 본 논문은 최소 평균 제곱 오차(minimum mean-square error: MMSE)에 기반한 비국소적 (nonlocal) 평균 영상 잡음 제거기법을 제안한다. 제안하는 기법에서는 기존의 비국소적 평균 기법에 추정 이론을 적용하여 잡음 제거에 사용되는 이웃 블록 또한 잡음을 포함하는 일반적인 경우로 확장하여 이웃 블록에 인가되는 가중치를 적응적으로 조절한다. 컴퓨터 모의실험을 통해 제안하는 알고리듬이 기존의 비국소적 기법에 비해 잡음 제거 성능이 향상됨을 확인한다.

  • PDF

컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법 (A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data)

  • 김영덕;박정희
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.842-853
    • /
    • 2017
  • 스트리밍 데이터는 시간에 따라 지속적으로 생성되는 데이터 시퀀스이다. 시간이 지남에 따라 데이터의 분포 또는 컨셉이 변화할 수 있으며, 이러한 변화는 분류 모델의 성능을 저하시키는 요인이 된다. 점층적 적응적 학습 방법은 컨셉 변화의 정도에 따라 현재 분류 모델의 가중치를 조절하여 업데이트를 수행함으로써 컨셉 변화에 대한 분류 모델의 성능을 유지할 수 있게 한다. 그러나, 컨셉 변화의 정도에 맞는 적절한 가중치를 결정하기가 어렵다는 문제점이 있다. 본 논문에서는 컨셉 변화에 따른 적응적 가중치 조정에 기반한 동적 앙상블 방법을 제안한다. 실험 결과는 제안한 방법이 다른 비교 방법들에 비해 높은 성능을 보여줌을 입증한다.

표적 추출을 위한 적응적 가중치 기반 FLIR 및 CCD 센서 영상 융합 알고리즘 (FLIR and CCD Image Fusion Algorithm Based on Adaptive Weight for Target Extraction)

  • 구은혜;이은영;김세윤;조웅호;김희수;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.291-298
    • /
    • 2012
  • 일반적인 ATR시스템에서는 대부분 FLIR센서에 의존하여 영상을 획득하나, 표적의 경계가 모호한 경우 견실한 표적 분할을 보장할 수 없는 한계점이 있다. 이에 본 논문은 FLIR과 CCD센서를 통해 획득된 영상에 대한 적응적 가중치 기반의 융합 방법을 제안함으로써 보다 정확한 표적 분할 성능을 재현한다. 융합을 위한 FLIR영상의 가중치는 모호한 경계를 구분하기 위한 bi-modality 척도와 표적 경계와의 거리를 통해 결정되고, CCD영상의 가중치는 표적과 배경의 질감차이를 나타내는 질감 척도와 거리 척도를 통해 도출된다. 제안 방법의 타당성 검증을 위하여 다양한 환경에서 획득된 표적 영상에 대한 제안 방법과 단일 센서 기반의 표적 분할의 성능 비교를 수행하였다.