Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.271-273
/
2021
본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.
This paper presents a Electrocardiogram(ECG) identification method using adaptive weight based on Least Mean Square Error(LMSE) optimization. With a preprocessing for noise suppression, we extracts the average ECG signal and its standard deviation at every time instant. Then the extracted information is stored in database. ECG identification is achieved by matching an input ECG signal with the information in database. In computing the matching scores, the standard deviation is used. The scores are computed by applying adaptive weights to the values of the input signal over all time instants. The adaptive weight consists of two terms. The first term is the inverse of the standard deviation of an input signal. The second term is the proportional one to the standard deviation between user SAECGs stored in the DB. Experimental results show up to 100% recognition rate for 32 registered people.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.305-307
/
2000
본 논문에서는 다층 퍼셉트론 신경망에서 연결선 수를 최소로 하면서 일반화 성능을 향상시키기 위해 가장 널리 쓰여지고 있는 Optimal Brain Surgeon을 이용한 프루닝(pruning)을 기반으로 하여 오차 함수의 가중치 감소항을 추가시키는 방법을 사용한다. 이때 학습 및 프루닝의 성능에 많은 영향을 미치는 가중치 감소항의 방영정도를 베이시안 테크닉에 기반하여 적응적으로 최적화 하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 벤치마크 데이터를 이용하여 실험을 수행하였다. 순수한 OBS 방법과 고정된 반영정도를 가진 가중치 감소항을 추가시킨 OBS, 그리고 제안하는 적응적 가중치 감소항을 적용한 OBS 방법을 비교하여 제한하는 방법이 기존의 두 방법에 비해 신경망 구조의 최적화 능력이 뛰어남을 확인할 수 있었다.
Recently, eigenvoice approach has been widely used for rapid speaker adaptation. However, even in the eigenvoice approach, Performance improvement using very small amount of adaptation data is relatively small in comparison with that using somewhat large adaptation data because the reliable estimation of weights of eigenvoice is difficult. In this paper, we propose a rapid speaker adaptation method based on eigenvoice using the weight distribution characteristics to improve the performance on a small adaptation data. In the Experimental results on vocabulary-independent word recognition task (using PBW 452 database), the weight threshold method alleviates the problem of relatively low performance for a tiny small adaptation data. When single adaptation word is used, word error rate is reduced about 9-18% by the weight threshold method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.85-88
/
2016
대비 강화는 컴퓨터 비젼, 영상 처리, 패턴인식에서 전처리 과정으로 이용되며 그 역할이 중요하다. 2차원 히스토그램을 이용한 대비 강화 방법은 인접 픽셀 간의 정보를 이용해 대비를 강화시키기 때문에 1차원 히스토그램을 이용한 대비 강화 방법보다 우수하다. 2차원 히스토그램 기반 알고리즘에서 2차원 히스토그램의 인접픽셀 간의 화소값 차이에 따라 가중치를 주는 커널 (kernel)이 사용된다. 이러한 커널은 영상 마다 같은 가중치를 곱해주기 때문에 원하는 대비를 시켜주지 못하는 단점이 있다. 이에 본 논문은 2차원 히스토그램을 1차원 히스토그램으로 정사영을 시켜 평균값과 표준편차를 통해 2차원 히스토그램을 통계학적으로 분석한다. 그리고 선형회귀법을 이용하여 2차원 히스토그램의 통계적 정보에 따른 적응적 가중치 커널을 제안하고, 이를 이용하여 효율적 대비 강화를 한다. 실험 결과를 통해 제안하는 방법이 기존의 알고리즘에 비해 대비 향상 성능이 더 우수한 방법임을 확인하였다.
Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.133-135
/
2018
본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.394-395
/
2010
본 논문은 최소 평균 제곱 오차(minimum mean-square error: MMSE)에 기반한 비국소적 (nonlocal) 평균 영상 잡음 제거기법을 제안한다. 제안하는 기법에서는 기존의 비국소적 평균 기법에 추정 이론을 적용하여 잡음 제거에 사용되는 이웃 블록 또한 잡음을 포함하는 일반적인 경우로 확장하여 이웃 블록에 인가되는 가중치를 적응적으로 조절한다. 컴퓨터 모의실험을 통해 제안하는 알고리듬이 기존의 비국소적 기법에 비해 잡음 제거 성능이 향상됨을 확인한다.
Streaming data is a sequence of data samples that are consistently generated over time. The data distribution or concept can change over time, and this change becomes a factor to reduce the performance of a classification model. Adaptive incremental learning can maintain the classification performance by updating the current classification model with the weight adjusted according to the degree of concept drift. However, selecting the proper weight value depending on the degree of concept drift is difficult. In this paper, we propose a dynamic ensemble method based on adaptive weight adjustment according to the degree of concept drift. Experimental results demonstrate that the proposed method shows higher performance than the other compared methods.
In automatic target recognition(ATR) systems, target extraction techniques are very important because ATR performance depends on segmentation result. So, this paper proposes a multi-sensor image fusion method based on adaptive weights. To incorporate the FLIR image and CCD image, we used information such as the bi-modality, distance and texture. A weight of the FLIR image is derived from the bi-modality and distance measure. For the weight of CCD image, the information that the target's texture is more uniform than the background region is used. The proposed algorithm is applied to many images and its performance is compared with the segmentation result using the single image. Experimental results show that the proposed method has the accurate extraction performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.