• Title/Summary/Keyword: 적응적 가중치 기반

Search Result 148, Processing Time 0.024 seconds

Clustering with Adaptive weighting of Context-aware Linear regression (상황인식기반 선형회귀의 적응적 가중치를 적용한 클러스터링)

  • Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.271-273
    • /
    • 2021
  • 본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.

  • PDF

ECG Identification Method Using Adaptive Weight Based LMSE Optimization (적응적 가중치를 사용한 LMSE 최적화 기반의 심전도 개인 인식 방법)

  • Kim, Seok-Ho;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents a Electrocardiogram(ECG) identification method using adaptive weight based on Least Mean Square Error(LMSE) optimization. With a preprocessing for noise suppression, we extracts the average ECG signal and its standard deviation at every time instant. Then the extracted information is stored in database. ECG identification is achieved by matching an input ECG signal with the information in database. In computing the matching scores, the standard deviation is used. The scores are computed by applying adaptive weights to the values of the input signal over all time instants. The adaptive weight consists of two terms. The first term is the inverse of the standard deviation of an input signal. The second term is the proportional one to the standard deviation between user SAECGs stored in the DB. Experimental results show up to 100% recognition rate for 32 registered people.

Optimal Brain Surgeon with Adaptive Weight Decay Term (적응적 가중치 감소항을 적용한 Optimal Brain Surgeon)

  • 이현진;지태창;박혜영;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.305-307
    • /
    • 2000
  • 본 논문에서는 다층 퍼셉트론 신경망에서 연결선 수를 최소로 하면서 일반화 성능을 향상시키기 위해 가장 널리 쓰여지고 있는 Optimal Brain Surgeon을 이용한 프루닝(pruning)을 기반으로 하여 오차 함수의 가중치 감소항을 추가시키는 방법을 사용한다. 이때 학습 및 프루닝의 성능에 많은 영향을 미치는 가중치 감소항의 방영정도를 베이시안 테크닉에 기반하여 적응적으로 최적화 하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 벤치마크 데이터를 이용하여 실험을 수행하였다. 순수한 OBS 방법과 고정된 반영정도를 가진 가중치 감소항을 추가시킨 OBS, 그리고 제안하는 적응적 가중치 감소항을 적용한 OBS 방법을 비교하여 제한하는 방법이 기존의 두 방법에 비해 신경망 구조의 최적화 능력이 뛰어남을 확인할 수 있었다.

  • PDF

Rapid Speaker Adaptation Based on Eigenvoice Using Weight Distribution Characteristics (가중치 분포 특성을 이용한 Eigenvoice 기반 고속화자적응)

  • 박종세;김형순;송화전
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-407
    • /
    • 2003
  • Recently, eigenvoice approach has been widely used for rapid speaker adaptation. However, even in the eigenvoice approach, Performance improvement using very small amount of adaptation data is relatively small in comparison with that using somewhat large adaptation data because the reliable estimation of weights of eigenvoice is difficult. In this paper, we propose a rapid speaker adaptation method based on eigenvoice using the weight distribution characteristics to improve the performance on a small adaptation data. In the Experimental results on vocabulary-independent word recognition task (using PBW 452 database), the weight threshold method alleviates the problem of relatively low performance for a tiny small adaptation data. When single adaptation word is used, word error rate is reduced about 9-18% by the weight threshold method.

Efficient Contrast Enhancement Using an Adaptive Weighted Kernel based on 2-D Histogram (2차원 히스토그램 기반 적응적 가중치 커널을 이용한 효율적 대비 강화)

  • Wee, Kyungchul;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.85-88
    • /
    • 2016
  • 대비 강화는 컴퓨터 비젼, 영상 처리, 패턴인식에서 전처리 과정으로 이용되며 그 역할이 중요하다. 2차원 히스토그램을 이용한 대비 강화 방법은 인접 픽셀 간의 정보를 이용해 대비를 강화시키기 때문에 1차원 히스토그램을 이용한 대비 강화 방법보다 우수하다. 2차원 히스토그램 기반 알고리즘에서 2차원 히스토그램의 인접픽셀 간의 화소값 차이에 따라 가중치를 주는 커널 (kernel)이 사용된다. 이러한 커널은 영상 마다 같은 가중치를 곱해주기 때문에 원하는 대비를 시켜주지 못하는 단점이 있다. 이에 본 논문은 2차원 히스토그램을 1차원 히스토그램으로 정사영을 시켜 평균값과 표준편차를 통해 2차원 히스토그램을 통계학적으로 분석한다. 그리고 선형회귀법을 이용하여 2차원 히스토그램의 통계적 정보에 따른 적응적 가중치 커널을 제안하고, 이를 이용하여 효율적 대비 강화를 한다. 실험 결과를 통해 제안하는 방법이 기존의 알고리즘에 비해 대비 향상 성능이 더 우수한 방법임을 확인하였다.

  • PDF

An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images (스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법)

  • Kim, Ho-Young;Lee, Seong-Won
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.902-915
    • /
    • 2011
  • Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.

Adaptive Face Blending for Face Replacement System (얼굴교체 시스템을 위한 적응적 블렌딩 방법)

  • Zhang, Xingjie;Kim, Changseob;Park, Jong-IL
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.133-135
    • /
    • 2018
  • 본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.

  • PDF

Nonlocal Image Denoising Algorithm Using Adaptive Weights (적응적 가중치를 사용한 비국소적 영상 잡음 제거 기법)

  • Lee, Chul;Lee, Chul-Woo;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.394-395
    • /
    • 2010
  • 본 논문은 최소 평균 제곱 오차(minimum mean-square error: MMSE)에 기반한 비국소적 (nonlocal) 평균 영상 잡음 제거기법을 제안한다. 제안하는 기법에서는 기존의 비국소적 평균 기법에 추정 이론을 적용하여 잡음 제거에 사용되는 이웃 블록 또한 잡음을 포함하는 일반적인 경우로 확장하여 이웃 블록에 인가되는 가중치를 적응적으로 조절한다. 컴퓨터 모의실험을 통해 제안하는 알고리듬이 기존의 비국소적 기법에 비해 잡음 제거 성능이 향상됨을 확인한다.

  • PDF

A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data (컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법)

  • Kim, Young-Deok;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.842-853
    • /
    • 2017
  • Streaming data is a sequence of data samples that are consistently generated over time. The data distribution or concept can change over time, and this change becomes a factor to reduce the performance of a classification model. Adaptive incremental learning can maintain the classification performance by updating the current classification model with the weight adjusted according to the degree of concept drift. However, selecting the proper weight value depending on the degree of concept drift is difficult. In this paper, we propose a dynamic ensemble method based on adaptive weight adjustment according to the degree of concept drift. Experimental results demonstrate that the proposed method shows higher performance than the other compared methods.

FLIR and CCD Image Fusion Algorithm Based on Adaptive Weight for Target Extraction (표적 추출을 위한 적응적 가중치 기반 FLIR 및 CCD 센서 영상 융합 알고리즘)

  • Gu, Eun-Hye;Lee, Eun-Young;Kim, Se-Yun;Cho, Woon-Ho;Kim, Hee-Soo;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • In automatic target recognition(ATR) systems, target extraction techniques are very important because ATR performance depends on segmentation result. So, this paper proposes a multi-sensor image fusion method based on adaptive weights. To incorporate the FLIR image and CCD image, we used information such as the bi-modality, distance and texture. A weight of the FLIR image is derived from the bi-modality and distance measure. For the weight of CCD image, the information that the target's texture is more uniform than the background region is used. The proposed algorithm is applied to many images and its performance is compared with the segmentation result using the single image. Experimental results show that the proposed method has the accurate extraction performance.