• 제목/요약/키워드: 적응작물

검색결과 339건 처리시간 0.026초

A New Medium-late Maturity Rice Cultivar, "Dongjin2" with Direct Seeding Adaptability and Multiple Disease Resistances (벼 중만생 복합내병 직파적응성 "동진2호")

  • Kim, Bo Kyeong;Ko, Jong Cheol;Baek, Man Kee;Nam, Jeong Kwon;Ha, Ki Yong;Kim, Ki Young;Lee, Jae Kil;Ko, Jae Kwon;Baek, So Hyeon;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • 제40권3호
    • /
    • pp.295-298
    • /
    • 2008
  • "Dongjin2" is a new japonica rice cultivar developed from the cross between Milyang165 with short culm and lodging resistance and $F_1$ plant of Iksan438, HR14018-B-1-1 and Iksan435 with high palatability at Honam Agricultural Research Institute (HARI), NICS, RDA in 2005. This cultivar has short grain shape and about 143 days growth duration from direct seeding to harvesting under Korean climate condition. The milled kernels of "Dongjin2" is translucent with non-glutinous endosperm. It has about 19.3% of amylose content and better palatability of cooked rice compared with "Nampyeongbyeo". This cultivar shows high resistance reaction to the bacterial blight pathogene race from $K_1$ to $K_3$, blast and stripe virus but susceptible to insect pests. "Dongjin2" yields about 5.71 and 5.74 MT/ha under the wet direct seeding and the transplanting at standard fertilizer level. "Dongjin2" would be adaptable for the southern plain area of Korea.

The Use and Abuse of Climate Scenarios in Agriculture (농업부문 기후시나리오 활용의 주의점)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제18권3호
    • /
    • pp.170-178
    • /
    • 2016
  • It is not clear how to apply the climate scenario to assess the impact of climate change in the agricultural sector. Even if you apply the same scenario, the result can vary depending on the temporal-spatial downscaling, the post-treatment to adjust the bias of a model, and the prediction model selection (used for an impact assessment). The end user, who uses the scenario climate data, should select climate factors, a spatial extend, and a temporal range appropriate for the objectives of an analysis. It is important to draw the impact assessment results with minimum uncertainty by evaluating the suitability of the data including the reproducibility of the past climate and calculating the optimum future climate change scenario. This study introduced data processing methods for reducing the uncertainties in the process of applying the future climate change scenario to users in the agricultural sector and tried to provide basic information for appropriately using the scenario data in accordance with the study objectives.

A New High Yielding Rice Variety with Multi-Disease Resistance, 'Keunseom' (중생 복합내병충성 초다수성 벼 '큰섬')

  • Ha, Un-Goo;Song, You-Chun;Yeo, Un-Sang;Cho, Jun-Hyeon;Lee, Jong-Hee;Lee, Ji-Yoon;Kwak, Do-Yeon;Chang, Jae-Ki;Hwang, Hung-Goo;Kim, Young-Doo;Cho, Young-Ho;Yang, Sae-Jun;Oh, Byeong-Gen;Shin, Mun-Sik;Ku, Yeon-Chung;Kim, Ho-Yeong
    • Korean Journal of Breeding Science
    • /
    • 제43권6호
    • /
    • pp.576-580
    • /
    • 2011
  • 'Keunseom', a new second generation Tongil-type rice variety (Oryza sativa L.), is a mid-maturing ecotype developed by the rice breeding team of Department of Functional Crop, NICS, RDA in 2006. This variety was originated from a cross between 'Dasanbyeo' and 'Namyeongbyeo' in 1996's summer season, which developed by pedigree breeding method. The pedigree of 'Keunseom' was YR18234-B-B-98-3-5-1, and it was designated 'Milyang202' in 2002. 'Keunseom' has tolerance to lodging, because it has short culm length as 77 cm. This variety is resistance to bacterial blight K1 race, rice stripe virus, rice dwarf virus, and leaf blast disease. Milled rice kernel of 'Keunseom' is a clean translucent with non-glutinous endosperm, and has good quality as it was clear in chalkness. The milled rice yield potential of 'Keunseom' was about 719 kg/10a at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to the mid and southern plain of Republic of Korea.

Calibration of crop growth model CERES-MAIZE with yield trial data (지역적응 시험 자료를 활용한 옥수수 작물모형 CERES-MAIZE의 품종모수 추정시의 문제점)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제20권4호
    • /
    • pp.277-283
    • /
    • 2018
  • The crop growth model has been widely used for climate change impact assessment. Crop growth model require genetic coefficients for simulating growth and yield. In order to determine the genetic coefficients, regional growth monitoring data or yield trial data of crops has been used to calibrate crop growth model. The aim of this study is to verify that yield trial data of corn is appropriate to calibrate genetic coefficients of CERES-MAIZE. Field experiment sites were Suwon, Jinju, Daegu and Changwon. The distance from the weather station to the experimental field were from 1.3km to 27km. Genetic coefficients calibrated by yield trial data showed good performance in silking day. The genetic coefficients associated with silking are determined only by temperature. In CERES-MAIZE model, precipitation or irrigation does not have a significant effect on phenology related genetic coefficients. Although the effective distance of the temperature could vary depending on the terrain, reliable genetic coefficients were obtained in this study even when a weather observation site was within a maximum of 27 km. Therefore, it is possible to estimate the genetic coefficients by yield trial data in study area. However, the yield-related genetic coefficients did not show good results. These results were caused by simulating the water stress without accurate information on irrigation or rainfall. The yield trial reports have not had accurate information on irrigation timing and volume. In order to obtain significant precipitation data, the distance between experimental field and weather station should be closer to that of the temperature measurement. However, the experimental fields in this study was not close enough to the weather station. Therefore, When determining the genetic coefficients of regional corn yield trial data, it may be appropriate to calibrate only genetic coefficients related to phenology.