최근 생성형 언어모델에 명령어 튜닝을 적용하여 사람의 명령을잘이해하고, 대답의 성능을 향상시키는 연구가 활발히 수행되고 있으며, 이 과정에서 다양한 명령어 튜닝 데이터셋이 등장하고 있다. 하지만 많은 데이터셋들 중에서 어떤 것을 선택해서 활용하지가 불분명하기 때문에, 현존하는 연구들에서는 단순히 데이터셋을 모두 활용하는 방식으로 명령어 튜닝이 진행되고 있다. 하지만 최근 연구들에서 고품질의 적은 데이터셋으로도 명령어 튜닝을 하기에 충분하다는 결과들이 보고되고 있는 만큼, 많은 명령어 데이터셋에서 고품질의 명령어를 선별할 필요성이 커지고 있다. 이에 따라 본 논문에서는 한국어 데이터셋에서도 명령어 튜닝 데이터셋의 품질을 향상시키기 위해, 기존의 데이터셋들에서 데이터를 큐레이션하여 확보된 적은 양의 고품질의 명령어 데이터셋인 KoQuality를 제안한다. 또한 KoQuality를 활용하여 한국어 언어모델에 명령어 튜닝을 진행하였으며, 이를 통해 자연어 이해 성능을 높일 수 있음을 보인다. 특히 제로샷 상황에서 KoBEST 벤치마크에서 기존의 모델들보다 높은 성능 향상을 보였다.
최근 딥러닝을 이용하여 객체 인식 학습을 위한 데이터셋을 구축하는데 있어 시간과 인력을 단축하기 위해 인조 데이터를 생성하는 연구가 진행되고 있다. 하지만 실제 환경과 관계없이 임의의 배경에 배치되어 구축된 데이터셋으로 학습된 네트워크를 실제 환경으로 구성된 데이터셋으로 테스트할 경우 인식률이 저조하다. 이에 본 논문에서는 실제 배경 이미지에 객체 이미지를 합성하고, 다양성을 위해 3차원으로 회전하여 증강하는 인조 데이터셋 생성 시스템을 제안한다. 제안된 방법으로 구축된 인조 데이터셋으로 학습한 네트워크와 실제 데이터셋으로 학습된 네트워크의 인식률을 비교한 결과, 인조 데이터셋의 성능이 실제 데이터셋의 성능보다 2% 낮았지만, 인조 데이터셋을 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터셋 구축 시스템임을 증명하였다.
최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.
스트레스 측정용 데이터셋의 구축은 건강, 의료분야, 심리향동, 교육분야 등 현대의 다양한 응용 분야에서 핵심적인 역할을 수행하교 있다. 특히, 스트레스 측정용 인공지능 모델의 효율적인 훈련을 위해서는 다양한 편향성을 제거하고 품질 관리된 데이터셋을 구축하는 것이 중요하다. 본 논문에서는 다양한 편향성 제거를 통한 품질의 관리된 스트레스 측정용 데이터셋 구축에 관하여 제안하였다. 이를 위해 스트레스 정의 및 측정도구 소개, 스트레스 인공지능 데이터 셋 구축과정, 품질향상을 위한 편향성 극복 전략 그리고 스트레스 데이터 수집시 고려사항을 제시하였다. 특히, 데이터셋 품질을 관리하기 위해 데이터셋 구축시 고려사항과, 발생할 수 있는 선택편향, 측정편향, 인과관계편향, 확증편향, 인공지능편향과 같은 다양한 편향서에 대해 검토하였다. 본 논문을 통해 스트레스 데이터 수집시 고려사항과 스트레스 데이터셋의 구축에서 발생할 수 있는 다양한 편향성을 체계적으로 이해하고, 이를 극복하여 품질이 보장된 데이터셋을 구축하는데 기여할 것으로 기대된다.
본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.
본 논문은 한국 수어에 대하여 수어 인식, 수어 번역, 수어 영상 시분할과 같은 수어에 관한 딥러닝 연구를 위한 데이터셋의 수집 및 실험을 진행하였다. 수어 연구를 위한 어려움은 2가지로 볼 수 있다. 첫째, 손의 움직임과 손의 방향, 표정 등의 종합적인 정보를 가지는 수어의 특성에 따른 인식의 어려움이 있다. 둘째, 딥러닝 연구를 진행하기 위한 학습데이터의 절대적 부재이다. 현재 알려진 문장 단위의 한국 수어 데이터셋은 KETI 데이터셋이 유일하다. 해외의 수어 딥러닝 연구를 위한 데이터셋은 Isolated 수어와 Continuous 수어 두 가지로 분류되어 수집되며 시간이 지날수록 더 많은 양의 수어 데이터가 수집되고 있다. 하지만 이러한 해외의 수어 데이터셋도 방대한 데이터셋을 필요로 하는 딥러닝 연구를 위해서는 부족한 상황이다. 본 연구에서는 한국 수어 딥러닝 연구를 진행하기 위한 대규모의 한국어-수어 데이터셋을 수집을 시도하였으며 베이스라인 모델을 이용하여 수어 번역 모델의 성능 평가 실험을 진행하였다. 본 논문을 위해 수집된 데이터셋은 총 11,402개의 영상과 텍스트로 구성되었다. 이를 이용하여 학습을 진행할 베이스라인 모델로는 수어 번역 분야에서 SOTA의 성능을 가지고 있는 TSPNet 모델을 이용하였다. 본 논문의 실험에서 수집된 데이터셋에 대한 특성을 정량적으로 보이고, 베이스라인 모델의 실험 결과로는 BLEU-4 score 3.63을 보였다. 또한, 향후 연구에서 보다 정확하게 데이터셋을 수집할 수 있도록, 한국어-수어 데이터셋 수집에 있어서 고려할 점을 평가 결과에 대한 고찰로 제시한다.
영상 딥러닝을 위해서는 다량의 영상 데이터셋이 필요한데, 객체의 종류에 따라 영상을 구하고 영상 데이터셋을 구축하는 방법에 많은 차이가 있다. 본 논문에서는 딥러닝을 위한 영상 데이터셋을 구축하는 방법을 제시하고 추적하는 객체에 따라 달라지는 성능을 분석하였다. 제안하는 데이터셋 구축방법을 활용하여 객체를 회전시킨 후 동영상을 촬영, 분할하여 커스텀 데이터셋을 구축하고, 성능을 분석한 결과 95% 이상의 객체 검출률을 보였으며, 이동 시 객체의 형상 변화가 적은 경우에 더 높은 성능이 나타났다. 영상 데이터를 구하기 어렵고, 형태의 변화가 적은 객체를 동영상 내에서 추적하기 위한 상황을 위하여는 본 논문에서 제시한 데이터셋 구축방법을 활용하는 것이 효과적일 것으로 판단된다.
최근 빅데이터 활용에 대한 요구사항이 증대됨에 따라 데이터 분석에 필요한 데이터셋 검색 기술에 관한 관심 또한 늘어나고 있다. 데이터셋 검색을 위해서는 일반 문서 검색과는 달리 데이터셋에 대한 메타데이터에 대한 활용도를 높여야 함에도 불구하고 이를 적극적으로 활용하는 검색 시스템에 관한 연구는 미미한 실정이다. 본 논문에서는 데이터셋의 메타데이터를 색인하고 이를 기반으로 데이터셋 검색을 수행하는 새로운 데이터셋 전용 검색 시스템을 제안한다. 데이터셋 검색결과에 부여하는 순위는 데이터셋 고유의 특성을 반영한 알고리즘을 새로이 고안하여 적용하며, 분석에 필요한 융합 가능한 데이터셋 여러 건을 한꺼번에 검색할 수 있도록 원천 질의에 의해 검색된 데이터셋과 연관 관계에 있는 추가 데이터셋을 검색하는 기능을 제공한다.
건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.