• Title/Summary/Keyword: 적외선 해석

Search Result 193, Processing Time 0.025 seconds

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

THERMAL DESIGN OF A PROTOMODEL SPACE INFRARED CRYOGENIC SYSTEM (적외선 우주망원경 냉각시스템 시험모델 열설계)

  • Yang Hyung-Suk;Kim Dong-Lak;Lee Byoung-Seob;Kim Geon-Hee;Lee Dae-Hee;Pak Soo-Jong;Nam Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2006
  • A Protomodel Space Infrared Cryogenic System (PSICS) cooled by a stirling cry-ocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

A Study on the Development of Noncontact Soldering Device of PV Cells Using Infrared Lamp (적외선 램프를 이용한 비접촉식 태양전지셀 솔더링 장치 개발에 관한 연구)

  • Lho, Tae-Jung;Kim, Seon-Jin;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • The reflector of infrared lamp is designed to the optimal circular shape through the analyses of lumination distributions with a triangular, rectangular and circular configurations of infrared lamps respectively by using Photopia. PLC is used to compare and amplify the difference between soldering temperature profile and feedback value. It is fed to IR lamp controller which adjusts the soldering temperature of PV cell. The soldering temperature measured using an infrared temperature sensor is then fed back to the PLC. The closed control loop of soldering temperature on a PV cell is implemented. The noncontact soldering device of PV cells using infrared lamp which is easily operated by HMI operation panel and controlled robustly by PLC and IR lamp controller is developed.

Study on Effectiveness of Ocean Meteorological Variables through Sensitivity Analysis of Ship Infrared Signature (함정 적외선신호 민감도 해석을 통한 기상변수 영향에 관한 연구)

  • Cho, Yong-Jin;Jung, Ho-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to a study on improving ship survivability, an IR signature represents the contrast radiance intensity between the radiation signature from a ship and the background signature. It was found from applying stealth techniques to the process of ship development that the IR signature is remarkably sensitive and dependent on the environment. In this study, marine climate data for the sea near the Korean Peninsula were collected, and the marine meteorological environment in Korean waters was defined. Based on this data, a study on the sensitivity of the IR signature of target objects was performed using analytical methods. The results of the research indicated that clouds have important effects on the infrared signature, but the velocity of the wind and the humidity have only slight effects on the IR signature. In addition, the air and seawater temperatures had hardly any effect on the IR signature, but it is judged that additional study is needed.

A Study on Hear Transfer around a Sharp Fin in Supersonic Flow (초음속 유동내 돌출된 핀 근방의 열전달 연구)

  • Song, Ji-Woon;Yu, Man-Sun;Cho, Hyung-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.927-933
    • /
    • 2007
  • Heat transfer characteristic near a sharp fin was studied in a supersonic flow. Mach number and the Reynolds number were 3 and $5{\times}10^7$ respectively. Infra-red thermography was used to obtain the variation of surface heat transfer coefficient distribution. The angles of attack were ranged from $12.5^{\circ}$ to $20^{\circ}$ and the numerical analysis and the oil flow method were conducted to understand flow fields near a sharp fin.

A Study on the Sensitivity of IR Signature of a Ship according to the Meteorological Environment of Korean Seas (한반도 해양환경에 따른 적외선 신호 민감도 해석연구)

  • Cho, Yong-Jin;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.679-685
    • /
    • 2005
  • Until now, the stealth design to reduce the infrared signature of ship haven't been carried out using the proper design criteria. The study on the maritime meteorological environment in the Korean seas hasn't been accomplished yet, so the design criteria of the maritime meteorological environment was just given by the engineering sense without experience of the Navy and/or of the shipyard. Even in rather good conditions(summer condition), the estimated IR signature of a ship showed larger values and couldn't predict the worst condition during the operation of a ship at sea. In this study, domestic maritime meteorological data were collected and variables affecting the IR signature of a ship had been derived through the sensitivity study of IR signature according to the maritime meteorological environment in Korean seas. The basic study on the criteria of the stealth design of IR signature has been carried out.

Motion-based Controlling 4D Special Effect Devices to Activate Immersive Contents (실감형 콘텐츠 작동을 위한 모션 기반 4D 특수효과 장치 제어)

  • Kim, Kwang Jin;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper describes a gesture application to controlling the special effects of physical devices for 4D contents using the PWM (Pulse Width Modulation) method. The user operation recognized by the infrared sensor is interpreted as a command for 3D content control, several of which manipulate the device that generates the special effect to display the physical stimulus to the user. With the content controlled under the NUI (Natural User Interface) technique, the user can be directly put into an immersion experience, which leads to provision of the higher degree of interest and attention. In order to measure the efficiency of the proposed method, we implemented a PWM-based real-time linear control system that manages the parameters of the motion recognition and animation controller using the infrared sensor and transmits the event.

IR Susceptibility of Supersonic Aircraft according to Omni-directional Detection Angle (초음속 항공기 전방위 탐지각도에 따른 적외선 피격성 분석)

  • Nam, Juyeong;Chang, Injoong;Park, Kyungsu;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.638-644
    • /
    • 2021
  • Infrared guided weapons act as threats that greatly degrade the survivability of combat aircraft. Infrared weapons detect and track the target aircraft by sensing the infrared signature radiated from the aircraft fuselage. Therefore, in this study, we analyzed the infrared signature and susceptibility of supersonic aircraft according to omni-directional detection angle. Through the numerical analysis, we derived the surface temperature distribution of fuselage and omni-directional infrared signature. Then, we calculated the detection range according to detection angle in consideration of IR sensor's parameters. Using in-house code, the lethal range was calculated by considering the relative velocity between aircraft and IR missile. As a result, the elevational susceptibility is larger than the azimuthal susceptibility, and it means that the aircraft can be attacked in wider area at the elevational situation.

Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface (레이돔 표면에 금속 나노코팅을 적용한 적외선 저피탐 성능특성 연구)

  • Lee, Yongwoo;Chang, Injoong;Nam, Juyeong;Bae, Hyung Mo;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.