• Title/Summary/Keyword: 적외분광분석

Search Result 307, Processing Time 0.024 seconds

PREDICTION OF PHYSICO-CHEMICAL AND TEXTURE CHARACTERISTICS OF BEEF BY NEAR INFRARED TRANSMITTANCE SPECTROSCOPY

  • Olivan, Mamen;Delaroza, Begona;Mocha, Mercedes;Martinez, Maria Jesus
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1256-1256
    • /
    • 2001
  • The physico-chemical and texture characteristics of meat determine the nutritional, technological and sensory quality. However, the analysis of meat quality requires expensive, laborious and time consuming analytical methods. The objective of this study was to evaluate NIR spectroscopy using transmittance for determining the moisture, fat, protein and total pigment content, the water holding capacity (WHC) and the toughness of beef meat. A total of 318 spectra were recorded from ground beef samples by a Feed Analyzer 1265 of Infratec. The samples were obtained from the Longissimus muscle of the 10$^{th}$ rib of yearling bulls, ground with an electrical chopper, vacuum packaged, aged during 7 days and frozen at -24$^{\circ}C$ until the analyses were done. Moisture content was measured by oven drying at 10$0^{\circ}C$, fat content was determined by Soxhlet extraction and protein content was estimated from nitrogen content using the Kjeldahl analysis. The total pigment content was determined by the method of Hornsey and the WHC using the method of filter paper press. The instrumental evaluation of texture (maximum load WB, maximum stress MS and toughness) was conducted in an Instron equipment with a Warner-Bratzler shearing device. This analysis was performed on a chop of 3.5 cm obtained from the longissimus of the 8$^{th}$ rib, aged during 7 days, kept frozen at -24$^{\circ}C$ and cooked before the analysis. Near infrared spectra were recorded as log 1/T (T=transmittance) at 2 nm intervals from 850 to 1050 nm using a Feed Analyzer 1265 of Infratec. Calibrations were performed with the WinISI software (vs. 1.02) using the MPLS method. To examine the effect of scatter correction o. derivation of spectra on the calibration performance, calibrations were calculated with the crude spectra or pretreated with different mathematical treatments (inverse MSC, SNVD) and/or second derivative operation. For chemical composition, the use of the scatter corrections improved the calibration statistics, in terms of lower SECV and higher $r^2$. In most of the variables, the use of the 2$^{nd}$ derivative improved the predictions, mainly when combined with the SNVD treatment. However, for predicting the texture traits, the best estimation was obtained from the crude spectrum. These results showed that the equations obtained for predicting moisture, fat and total pigments were very accurate, with $r^2$ being higher that 0.9. However, the prediction of the texture traits (WB, MS, toughness) from ground meat was poor.

  • PDF

Wine quality grading by near infrared spectroscopy.

  • Dambergs, Robert G.;Kambouris, Ambrosias;Schumacher, Nathan;Francis, I. Leigh;Esler, Michael B.;Gishen, Mark
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1253-1253
    • /
    • 2001
  • The ability to accurately assess wine quality is important during the wine making process, particularly when allocating batches of wines to styles determined by consumer requirements. Grape payments are often determined by the quality category of the wine that is produced from them. Wine quality, in terms of sensory characteristics, is normally a subjective measure, performed by experienced winemakers, wine competition judges or winetasting panellists. By nature, such assessments can be biased by individual preferences and may be subject to day-to-day variation. Taste and aroma compounds are often present in concentrations below the detection limit of near infrared (NIR) spectroscopy but the more abundant organic compounds offer potential for objective quality grading by this technique. Samples were drawn from one of Australia's major wine shows and from BRL Hardy's post-vintage wine quality allocation tastings. The samples were scanned in transmission mode with a FOSS NIR Systems 6500, over the wavelength range 400-2500 ㎚. Data analysis was performed with the Vision chemometrics package. With samples from the allocation tastings, the best correlations between NIR spectra and tasting data were obtained with dry red wines. These calibrations used loadings in the wavelengths related to anthocyanins, ethanol and possibly tannins. Anthocyanins are a group of compounds responsible for colour in red wines - restricting the wavelengths to those relating to anthocyanins produced calibrations of similar accuracy to those using the full wavelength range. This was particularly marked with Merlot, a variety that tends to have relatively lower anthocyanin levels than Cabernet Sauvignon and Shiraz. For dry white wines, calibrations appeared to be more dependent on ethanol characteristics of the spectrum, implying that quality correlated with fruit maturity. The correlations between NIR spectra and sensory data obtained using the wine show samples were less significant in general. This may be related to the fact that within most classes in the show, the samples may span vintages, glowing areas and winemaking styles, even though they may be made from only one grape variety. For dry red wines, the best calibrations were obtained with a class of Pinot Noir - a variety that tends to be produced in limited areas in Australia and would represent the least matrix variation. Good correlations were obtained with a tawny port class - these wines are sweet, fortified wines, that are aged for long periods in wooden barrels. During the ageing process Maillard browning compounds are formed and the water is lost through the barrels in preference to ethanol, producing “concentrated” darkly coloured wines with high alcohol content. These calibrations indicated heaviest loadings in the water regions of the spectrum, suggesting that “concentration” of the wines was important, whilst the visible and alcohol regions of the spectrum also featured as important factors. NIR calibrations based on sensory scores will always be difficult to obtain due to variation between individual winetasters. Nevertheless, these results warrant further investigation and may provide valuable Insight into the main parameters affecting wine quality.

  • PDF

CHEMICAL AND MICROBIOLOGICAL ANALYSIS OF GOAT MILK, CHEESE AND WHEY BY NIRS

  • Perez Marin, M.D.;Garrido Varo, A.;Serradilla, J.M.;Nunez, N.;Ares, J.L.;Sanchez, J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1513-1513
    • /
    • 2001
  • Present Food Legislation compels dairy industry to carry out analyses in order to guarantee the food safety and quality of products. Furthermore, in many cases industry pays milk according to bacteriological or/and nutritional quality. In order to do these analyses, several expensive instruments are needed (Milkoscan, Fossomatic, Bactoscan). NIRS technology Provides a unique instrument to deal with all analytical requirements. It offers as main advantages its speed and, specially, its versatility, since not only allows determine all the parameters required in milk analysis, but also allows analyse other dairy products, like cheese or whey. The objective of this study is to develop NIRS calibration equations to predict several quality parameters in goat milk, cheese and whey. Three sets of 123 milk samples, 190 cheese samples and 109 whey samples, have been analysed in a FOSS NIR Systems 6500 I spectrophotometer equipped with a spinning module. Milk and whey were analysed by folded transmission, using circular cells with gold surface and pathlength of 0.1 m, while intact cheese was analysed by reflectance using standard circular cells. NIRS calibrations were obtained for the prediction of chemical composition in goat milk, for fat (r$^2$=0.92; SECV=0.20%), total solids (r$^2$=0.95: SECV=0.22%), protein (r$^2$=0.94; SECV=0.07%), casein (r$^2$=0.93; SECV=0.07%) and lactose (r$^2$=0.89; SECV=0.05%). Moreover, equations have been performed to determine somatic cells (r$^2$=0.81; SECV=276.89%) and total bacteria (r$^2$=0.58; SECV=499.32%) counts in goat milk. In the case of cheese, calibrations were obtained for the prediction of fat (r$^2$=0.92; SECV=0.57), total solids (r$^2$=0.80; SECV=0.92%) and protein (r$^2$=0.70; SECV=0.63%). In whey, fat (r$^2$=0.66; SECV=0.08%), total solids (r$^2$=0.67; SECV=0.19%) and protein (r$^2$=0.76; SECV=0.07%) NIRS equations were obtained. These results proved the viability of NIRS technology to predict chemical and microbiological parameters and somatic cells count in goat milk, as well as chemical composition of goat cheese and whey.

  • PDF

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.