• Title/Summary/Keyword: 적설하중

Search Result 59, Processing Time 0.022 seconds

Current Status and Development of Greenhouse Models for Oriental Melon Cultivation in Seongju Region (성주지역 참외 재배용 온실구조 현황 및 모델 개발)

  • Lee, Jong Won;Baek, Chul Heun;Lee, Hyun Woo;Chung, Sung Won
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.95-108
    • /
    • 2014
  • The objective of this study is to develop the plastic greenhouse models which are structurally safe under the weather condition of Seongju and have the dimensions suitable for oriental melon cultivation as well. To grasp the structural features of greenhouses in Seongju, the field survey was conducted on 406 farmhouses which included 2,068 greenhouses. The field survey showed that the roof shape of arch type accounted for the highest rate, but recently even span or peach type became more popular and the width and height of greenhouse tended to increase as the period of use was short. The relationship of the width, ridge height and eaves height were established based on field survey data. Using climate data of Gumi adjacent to Seongju, the regressions were determined for the design wind speed and design snow depth depending on recurrence period. To design the greenhouse models against weather disasters in Seongju, the optimal design loads are 23.7 cm of snow depth and $33.8m{\cdot}s^1$ of wind speed. As the design results, four models of single-span greenhouse, two models of double-span greenhouses including extension were developed.

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

Characteristics of the Newly Developed Rain Shelter for Grapevine and Growth of 'Campbell Early' (신개발 포도 비가림 시설의 특성과 '캠벌얼리'의 생육)

  • Lee, Yun Sang;Kim, Seung Deok;Lee, Seok Ho;Hong, Seong Taek;Lee, Jae Wung;Hong, Eui Yon;Kim, Dae Il
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.252-257
    • /
    • 2015
  • Fruit cracking and vine leaf spot of grapes tend to occur when the plants were directly exposed to rain under outdoor culture. Rain shelter facility can be an alternative method to prevent the cracking and disease of grape, but it also has some limitations in practical usages. We designed rain shelter facility which can completely shut out the rain and ventilate naturally, and it was upgraded to meet the standards of disaster prevention against snow and wind load. The newly developed rain shelter has two-story roof structure, and the $2^{nd}$ floor roof was equipped over $1^{st}$ floor roof at a distance of 40cm. For natural ventilation and water proof, the upper roof protruded about 50cm from the ridge of a $1^{st}$ floor roof. The various tests were carried to examine such as grape quality, brown spot and fruit cracking of Campbell Early under the conventional and the newly developed rain shelter facility which was built about $100{\ss}{\check{S}}$. In comparison of temperature between the conventional and the newly developed rain shelter facility when outside temperature was more than $34^{\circ}C$, the inside temperature was recorded as $40.7^{\circ}C$ and $37.4^{\circ}C$, respectively. There was no significant difference between the two facilities when outside was below $32^{\circ}C$ The quality such as soluble solids and marketable fruit was increased, and fruit cracking of grapes and vine leaf spot also drastically diminished in the newly developed rain shelter.

Analysis of Structural Safety of the Welded Pipe Columns Adopted in Paprika Greenhouse (파프리카 재배용 온실에서 용접 파이프 기둥재의 구조적 안전성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Im, Jae-Un;Kwon, Sun-Ju;Kim, Hyeon-Tae;Kim, Young-Ju;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • This study was conducted on greenhouses whose side heights had been raised after the columns of 1-2W basic type greenhouses had been cut and welding with the same-sized pipes. When the wind load or snow load affects restructured pipe greenhouse like this, those parts will be structurally unsafe. To examine this, the bending strength of welded columns were measured through four stages and compared with the pipes in their original condition. Results are as follows. In the case of a bending test on welded joints about steel pipes used for greenhouses, satisfactory results couldn't be drawn because sections of both ends and the loading parts couldn't endure loads and sank regardless of loading methods. Partial problems could be solved by inserting inside pipe(steel bar) at the sections and the loading parts, but it was necessary to devise more satisfactory bending test methods. The strength of welded joints wasn't much different compared with original conditions and demonstrated only slight differences according to the sample production conditions. However, significant incompleteness in the welding process was expected to cause a decisive loss in strength. On the assumption that there were no problems in the welding process or with regard to the inclination of sub materials for columns after connection, it was deemed reasonable to assume that the strength of welded pipes was about 84~90% of the strength of the pipes in their original condition. Considering mid- and long-term strength decline following the onset of rust at joints or welding sections, structural changes in the main sub materials that are used for greenhouses at farmhouses have to be avoided to ensure structural safety, unless these changes are inevitable.

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Structural Reinforcement Methods and Structural Safety Analysis for the Elevated Eaves Height 1-2W Type Plastic Greenhouse (측고를 높인 1-2W형 비닐하우스의 구조안전성 분석 및 구조보강 방법)

  • Ryu, Hee-Ryong;Yu, In-Ho;Cho, Myeong-Whan;Um, Yeong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.192-199
    • /
    • 2009
  • This study was conducted to find proper structural reinforcement methods for the 4.5m-high (eaves height) 1-2W type plastic greenhouse. 3D finite element analysis was used to analyze the steel-tube structure. The 4.5m-high 1-2W type plastic greenhouse was modified by welding 1.5m-long steel-pipes into a 3.0m-tall columns of the standard 1-2W type plastic greenhouse. This remodeling method is widely used in Korea with farmer's discretion to increase the production when they grow paprika. But it is not based on the quantitative structural analysis. The proposed reinforcement methods were proved to stand against the design wind velocity of $40m{\cdot}s^{-1}$ and snow depth of 40cm. It strongly implies that the cross beam between side columns and wind resistance walls, and the lattice type cross beam should be good reinforcements to improve the structural safety of the elevated eaves height plastic greenhouse.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.

Development of Rain Shelter for Chinese Cabbage Rainproof Cultivation (배추재배용 비가림하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • This study was carried out to develop rain shelter which can make an appropriate size and environment for Chinese cabbage rainproof cultivation. Fifty three farms with chinese cabbage rainproof cultivation system have been investigated to set up width and height of rain shelter. Mostly the width of 6m was desired for rain shelter and the height of 1.6m for their eaves, so these values were chosen as the dimensions for rain shelter. After an analysis of their structural safety and installation costs by the specifications of the rafter pipe, Ø$25.4{\times}1.5t$ and 90cm have been set as the size of rafter that such size costs the least. This size is stable with $27m{\cdot}s^{-1}$ of wind velocity and 17cm of snow depth. Therefore it is difficult to apply this dimension to area with higher climate load. In order to sort out such problem, the rain shelter has been designed to avoid damage on frame by opening plastic film to the ridge. Once greenhouse band is loosen by turning the manual switch at the both sides of rain shelter and open button of controller is pushed then switch motor rises up along the guide pipe and plastic film is opened to the ridge. Chinese cabbage can be damaged by insects if rain shelter is opened completely as revealed a field. To prevent this, farmers can install an insect-proof net. Further, the greenhouse can be damaged by typhoon while growing Chinese cabbage therefore the effect of an insect-proof net on structural safety has been analyzed. And then structural safety has been analyzed through using flow-structure interaction method at the wind condition of $40m{\cdot}s^{-1}$. And it assumed that wind applied perpendicular to side of the rain shelter which was covered by insect-proof net. The results indicated that plastic film was directly affected by wind therefore high pressure occurred on the surface. But wind load on insect-proof net was smaller than on plastic film and pressure distribution was also uniform. The results of structural analysis by applying pressure data extracted from flow analysis indicated that the maximum stress occurred at the end of pipe which is the ground part and the value has been 54.6MPa. The allowable stress of pipe in the standard of structural safety must be 215 MPa or more therefore structural safety of this rain shelter is satisfied.