• Title/Summary/Keyword: 적설평가

Search Result 43, Processing Time 0.028 seconds

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

Evaluation of the snow simulations from CLM using satellite-based observations (위성 관측 자료를 활용한 지면모형(CLM)의 적설 모의 평가)

  • Seo, Jungho;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.332-332
    • /
    • 2022
  • 적설은 지구 기후시스템과 수문순환 과정에서 중요한 역할을 하고 있으며, 겨울철의 적설은 봄철에 녹으면서 식생과 수자원 제공에 큰 영향을 주는 인자로 알려져 있다. 동아시아가 위치한 북반구는 적설량의 90%가 관찰되고 토지의 약 42%가 긴 시간동안 눈으로 덮여 있어 지표 에너지와 물 균형에 영향을 주고, 특히 수자원 관리를 위한 유출이나 토양수분과 같은 수문 인자에 큰 영향을 미친다. 따라서 적설을 정확하게 예측하는 것은 수자원 관리에 있어 매우 중요한 일이다. 한편, 이러한 수문 순환을 정확히 예측하기 위해 수문 분야에서는 지면모형(Land Surface Model, LSM)을 많이 사용하고 있다. 지면모형은 지표면과 대기 사이의 상호작용을 모의하기 위해 개발되었고, 에너지, 수증기, 이산화탄소 등의 다양한 인자들의 교환에 대하여 해석하며, 토양수분, 유출량 등의 수자원 분야의 주요 인자들을 산출하여 수자원 관리에 적극적으로 활용되고 있다. 이에 본 연구에서는 National Center for Atmospheric Research(NCAR)에서 개발한 Community Land Model(CLM)을 사용하여 2001년부터 2016년까지 25km의 공간해상도로 동아시아 지역의 적설 모의를 평가하였다. CLM의 적설 모의 평가 인자는 Snow depth, Snow water equivalent의 2가지 인자를 대상으로 수행하였고, 모의 성능 평가를 위한 관측 자료로 NASA Aqua와 JAXA GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer(AMSR) 센서에서 제공하는 위성 관측 자료와 Defense Meteorological Satellite Program(DMSP) 위성의 Special Sensor Microwave/Imager(SSM/I) 센서와 Nimbus-7 위성의 Scanning Multichannel Microwave Radiometer(SMMR) 센서에서 제공하는 위성 관측 자료를 기반으로 지상 기상 관측소 자료와 조합하여 재생성한 European Space Agency Global Snow Monitoring for Climate Research (ESA GlobSnow)의 자료를 사용하였다. 그 결과 CLM의 적설 모의는 과대 추정하는 것을 알 수 있었으며, 본 연구의 결과는 동아시아 적설 모의 개선을 위해 자료 동화를 사용하는 후속 연구의 기초자료로 사용할 수 있다.

  • PDF

Application of SWAT model in consideration of Snow pack and Snow melt (적설 및 융설의 영향을 고려한 SWAT모형의 적용)

  • Jeong, Jae-Ung;Kim, Dae-Geun;Park, Jae-Hyun;Park, Chang-Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1876-1879
    • /
    • 2006
  • 우리나라의 경우 약 70%가 산악지형이며, 특히 북동부 산악지대의 경우 겨울철에 내린 눈이 봄철까지 쌓여있는 경우가 많기 때문에 수자원의 양적측면의 평가는 겨울철 적설과 융설을 고려하는 것이 필요하다. 본 연구에서는 대표적인 장기유출모형인 SWAT모형을 이용하여 강원도 쌍천유역을 대상으로 적설 및 융설의 영향을 검토하였다. 융설모형을 고려하지 않는 경우에는 강수가 발생하면 그 즉시 유출이 발생하나, 융설모형을 적용하는 경우에는 강설 이후 기온이 상승하여 융설이 된 이후에 유출이 발생하게 된다. 즉, 강원도의 산악지역에서는 적설 및 융설모형의 적용여부에 따라 봄철 가뭄시기에 차이가 발생할 수 도 있다. 실측 유량과 모의를 통해 얻어진 유량을 비교한 결과, 적설 및 융설의 영향을 고려하지 않을 때 보다 고려할 경우가 실측유량과 더 유사한 패턴을 보였다. 유황분석 결과, 적설 및 융설의 영향을 고려하지 않을 때보다 고려할 경우에 하천의 유황이 다소 증가하였다.

  • PDF

Extraction of Heavy Snowfall Vulnerable Area for 3 Representative Facilities Using GIS and Remote Sensing Techniques (GIS/RS를 이용한 3개의 대표 시설물별 폭설 취약지역 추출기법 연구)

  • Ahn, So-Ra;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • This study is to analyze the heavy snowfall vulnerable area of snow load design criteria for greenhouse, cattle shed and building using ground measured snow depth data and Terra MODIS snow cover area(SCA). To analyze the heavy snowfall vulnerable area, Terra MODIS satellite images for 12 years(2001-2012) were used to obtain the characteristics of snow depth and snow cover areas respectively. By comparing the snow load design criteria for greenhouse(cm), cattle shed($kg/m^2$), and building structure($kN/m^2$) with the snow depth distribution results by Terra MODIS satellite images, the facilities located in Jeolla-do, Chungcheong-do, and Gangwon-do areas were more vulnerable to exceed the current design criteria.

Snow Melting Simulation of Gwangdong Dam Basin in the Spring Season Using Developed K-DRUM Model (K-DRUM 모형의 개선을 통한 광동댐 유역의 봄철 융설 모의)

  • Kim, Hyeon Sik;Kang, Shin Uk;Hwang, Phyil Sun;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.355-361
    • /
    • 2012
  • Gwangdong Dam Watershed is affected by the increased discharge caused by the melting snow in the spring season. Therefore, simulation results obtained using hydrologic models have generally been inaccurate in relation to discharge without snow pack and melt modules. In this research, a grid based distributed rainfall runoff model (K-DRUM) was developed using a snow pack and melt module, and has been applied in the Gwangdong Dam Watershed to simulate the discharge for a four year period. A previous version of K-DRUM, which does not include a snow pack or melt module, was used to calculate the discharge in order to compare the snow melt effect. The simulation period lasted about 7 months from October of the previous year to April of this year using hourly precipitation and weather observed data. To evaluate the model performance, NSE, PBIAS and RSR statistics techniques were applied using the simulation results of the discharge. From the results of reliability evaluation, the K-DRUM model, which uses a snow pack and melt module, had a good applicability for the runoff simulation considering the snow melt effect in the spring.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

Assessment of Snowmelt Impact on Chungju Dam Watershed Inflow Using Terra MODIS Data and SWAT Model (Terra MODIS 위성영상과 SWAT 모형을 이용한 융설이 충주댐 유입량에 미치는 영향 평가)

  • Kim, Saet Byul;Ahn, So Ra;Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.457-467
    • /
    • 2014
  • This study is to evaluate the snowmelt impact on dam inflow for the Chungju Dam watershed $6,642.0km^2$ using Terra MODIS (Moderate-Resolution Imaging Spectroradiometer) and Soil and Water Assessment Tool (SWAT). To determine the SWAT snowmelt parameter; snow cover depletion curve (SCDC) the snow depth distribution (SDD) using Terra MODIS was used, the snow depth was spatially interpolated using snowfall data of ground meteorological stations. For 10 sets (2000-2010) data during snowmelt period (November-April), the sno50cov parameter, that is, the 50% coverage at a fraction of SCDC which determines the shape of snow depletion process, showed the values of 0.4 to 0.7. The SWAT model was calibrated with average $R^2$ of 0.54 using the sno50cov of each year. The 10 years average streamflow during snowmelt period was 104.3 mm which covers 12.0% of the annual streamflow.

Application of Snowmelt Parameters and the Impact Assessment in the SLURP Semi-Distributed Hydrological Model (준 분포형 수문모형 SLURP에서 융설매개변수 적용 및 영향 평가)

  • Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.617-628
    • /
    • 2007
  • The purpose of this paper is to prepare snowmelt parameters using RS and GIS and to assess the snowmelt impact in SLURP (Semi-distributed Land Use-based Runoff Process) model for Chungju-Dam watershed $(6,661.5km^2)$. Three sets of NOAA AVHRR images (1998-1999, 2000-2001, 2001-2002) were analyzed to prepare snow-related data of the model during winter period. Snow cover areas were extracted using 1, 3 and 4 channels, and the snow depth was spatially interpolated using snowfall data of ground meteorological stations. With the snowmelt parameters, DEM (Digital Elevation Model), land cover, NDVI (Normalized Difference Vegetation Index) and weather data, the model was calibrated for 3 years (1998, 2000, 2001), and verified for 1 year (1999) using the calibrated parameters. The average Nash-Sutcliffe efficiencies for 4 years (1998-2001) discharge comparison with and without snowmelt parameters were 0.76 and 0.73 for the full period, and 0.57 and 0.19 for the period of January to May. The results showed that the spatially prepared snow-related data reduced the calibration effort and enhanced the model results.

Effect of the Late Fall Fertilization and Snow Cover Period on Spring Greenup of Creeping Bentgrass at Following Year (늦 가을철 시비와 적설로 인한 크리핑 벤트그래스의 이듬해 봄철 생육)

  • Lee, Duk-Ho;Jeon, Jun-Ki;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.123-132
    • /
    • 2009
  • This study was designed to investigate the effect of the late fall fertilization applied with methyl urea(MU), compound chemical fertilizer(CF), humate(HM), and organic compost fertilizer(NS) on spring greenup of creeping bentgrass at following year. The plots were treated with various snow cover periods before transforming to ski slopes from golf holes during 2007 fall to 2008 spring. The highest visual quality and greenup rate were shown on MU or HM applications at 10 days before snow cover treatment. The CF treatment which had a highest phosphorus rate was most effective with a 13 cm of root length at the reconversion date to golf hole from ski slope of the following spring. However, the application of CF followed by immediate snow cover showed the worst results on visual quality and green color caused by a leaf burning damage from the residual effect of CF. At least 10 days were required to avoid phytotoxicant from undissolved granular of CF before snow cover practise. The application of NS showed the highest result on leaf dry weight at no snow cover plot in next spring, but not on green color and visual quality. Therefore, the proper interval period of snow cover after late fall fertilization should be an important management skill on the spring greenup of creeping bentgrass on following year transforming from ski slope to golf hole.

Performance Evaluation of Snow Detection Using Himawari-8 AHI Data (Himawari-8 AHI 적설 탐지의 성능 평가)

  • Jin, Donghyun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Eunkyung;Han, Hyeon-gyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1025-1032
    • /
    • 2018
  • Snow Cover is a form of precipitation that is defined by snow on the surface and is the single largest component of the cryosphere that plays an important role in maintaining the energy balance between the earth's surface and the atmosphere. It affects the regulation of the Earth's surface temperature. However, since snow cover is mainly distributed in area where human access is difficult, snow cover detection using satellites is actively performed, and snow cover detection in forest area is an important process as well as distinguishing between cloud and snow. In this study, we applied the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to the geostationary satellites for the snow detection of forest area in existing polar orbit satellites. On the rest of the forest area, the snow cover detection using $R_{1.61{\mu}m}$ anomaly technique and NDSI was performed. As a result of the indirect validation using the snow cover data and the Visible Infrared Imaging Radiometer (VIIRS) snow cover data, the probability of detection (POD) was 99.95 % and the False Alarm Ratio (FAR) was 16.63 %. We also performed qualitative validation using the Himawari-8 Advanced Himawari Imager (AHI) RGB image. The result showed that the areas detected by the VIIRS Snow Cover miss pixel are mixed with the area detected by the research false pixel.