Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.443-443
/
2022
적설은 자주는 아니지만 가끔 비교적 넓은 범위에 피해를 발생시킨다. 적설에 의한 피해를 예방하기 위해서는 피해를 유발하는 적설심을 미리 파악해 둘 필요가 있다. 하지만 관측하고 있는 적설심은 특정 관측지점으로 한정되어 피해를 유발하는 한계적설심을 파악하는데 어려움이 있다. 이를 극복하기 위한 일반적인 방법은 관측지점의 적설을 보간하여 공간적으로 확대하는 것이다. 하지만 이것은 매우 적은 자료를 가지고 넓은 영역을 통계적으로 추정해야하는 한계로 인해 피해 유발 한계적설심의 구명에 더 혼란을 주기도 한다. 이를 보완하기 위해서는 넓은 영역을 관측하는 위성영상을 활용할 수 있으며, 그 중에서도 합성개구레이더(Synthetic Aperture Radar; SAR)를 이용한 InSAR(Interferometric Synthetic Aperture Radar) 기법은 이를 위해 적절한 방법일 수 있다. 영상의 간섭계는 두 개의 다른 시기에 측정된 합성개구레이더 영상의 위상차를 이용한 것으로 일반적으로 다른 조건들이 일치할 때 지형의 변화를 추적할 때 사용되곤 한다. 그런데 만약 두 시기 사이에 특별한 지형적인 변화를 일으키는 요인이 없고 단지 적설만이 존재한다면 두 영상의 위상차는 적설의 효과로 볼 수 있을 것이다. 적설이 전파의 전달경로를 다르게 만들어 위상차를 발생시키는 것으로 가정할 수 있다. 이때 발생하는 위상차는 적설심과 적설의 굴절률에 의해 다를 수 있다. 이에 본 연구에서는 적설 전후에 수집된 인공위성 합성개구레이더 자료의 위상차를 분석한 간섭영상을 이용해 적설심의 공간분포를 추정하여 비교해 보고자 한다. 이를 위해 적설에 대한 투과가 가능한 C밴드 레이더를 사용하는 Sentinel-1의 영상을 사용하였다. 적설심의 공간분포는 실제 피해발생지역의 적설심을 보다 정확하게 추정하는데 기여할 수 있으며, 이것은 실제 피해유발적설심을 파악하는데 도움이 될 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.194-198
/
2007
융설 모형의 중요 매개변수인 적설분포면적은 실제 우리나라에서 적설과 관련한 관측 자료의 부족으로 인해 매개변수 추정이 어렵다. 이러한 문제점 해결을 위해 원격탐사기법을 활용하여 적설분포면적을 추출하였다. 본 연구에서는 1997년부터 2006년까지의 겨울철 NOAA (National Oceanic and Atmospheric Administration)의 AVHRR(Advanced Very High Resolution Radiometer) 위성영상의 8 sets의 총 108개 영상을 이용하여 적설분포면적을 추출하였고, 기상청의 지상기상관측소의 최심적설심 자료를 이용하여 GIS 자료를 구축함으로써 적설심의 공간적 분포를 추출하였다. 이를 국내 5대유역인 한강, 낙동강, 금강, 영산강, 섬진강 유역에 대하여 융설모형의 주요 매개변수인 적설분포면적, 유역 평균, 최대 적설심과 적설분포감소비곡선을 구축하였다. 그 중 적설분포면적감소곡선 (SDC : Snow cover Depletion Curve)는 적설분포면적의 감소형태를 나타내주는 지표로써 융설의 가장 민감한 매개변수이다. 이를 국내 5대강 유역에 대해 구축하여 정량화하였다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1980-1984
/
2006
융설 모형을 이용하여 융설 기간 동안의 하천유출량을 모의하기 위해서는 융설 관련 매개변수의 정립이 반드시 필요하다. 우리나라의 경우 관측 자료의 부족으로 인하여 적설분포, 적설심, 적설면적감소곡선과 같은 융설 관련 매개변수의 추출이 불가능 하였다. 본 연구에서는 1997년부터 2003년까지의 겨울철(11월-4월) NOAA/AVHRR 위성영상을 이용하여 한반도의 적설분포도를 추출하고 기상청의 69개소 유인지상기상관측소의 기상자료 중 최심적설심 자료로서 공간내삽법을 통하여 동일한 기간의 최심적설심 분포도를 작성한 후 적설분포도와 중첩하여 남한의 적설심 분포도를 추출하였다. 또한, 적설면적감소곡선은 소양강댐과 충주댐 유역으로 대상으로 평균기온과 적설면적과의 상관관계로부터 각 연도별 선형회귀식을 추출하여 적설면적감소곡선을 작성하였다.
Kang Su-Man;Shin Hyung-Jin;Kwon Hyung-Joong;Kim Seong-Joon
Proceedings of the KSRS Conference
/
2006.03a
/
pp.31-35
/
2006
융설 모형을 이용하여 융설 기간 동안의 하천유출량을 모의하기 위해서는 융설 관련 매개변수의 정립이 반드시 필요하다. 우리나라의 경우 관측 자료의 부족으로 인하여 적설분포, 적설심, 적설면적감소곡선과 같은 융설 관련 매개변수의 추출이 불가능 하였다. 본 연구에서는 1997년부터 2003년까지의 겨울철(11월-4월) NOAA/AVHRR 위성영상을 이용하여 한반도의 적설분포도를 추출하고 기상청의 69개소 유인지상기상관측소의 기상자료 중 최심적설심 자료로서 공간내삽법을 통하여 동일한 기간의 최심적설심 분포도를 작성한 후 적설분포도와 중첩하여 남한의 적설심 분포도를 추출하였다. 또한, 적설면적감소곡선은 소양강댐과 충주댐 유역으로 대상으로 평균기온과 적설면적과의 상관관계로부터 각 연도별 선형회귀식을 추출하여 적설면적감소곡선을 작성하였다.
Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.
융설 모형의 중요 매개변수인 적설분포면적은 실제 우리나라에서 적설과 관련한 관측 자료의 부족으로 인해 매개변수 추정이 어렵다. 이러한 문제점 해결을 위해 원격탐사기법을 활용하여 적설분포면적을 추출하였다. 본 연구에서는 1997년 부터 2006년 까지의 겨울철 NOAA (National Oceanic and Atmospheric Administration)의 AVHRR(Advanced Very High Resolution Radiometer) 위성영상의 8 sets의 총 108개 영상을 이용하여 적설분포면적을 추출하였고,기상청의 지상기상관측소의 최섬적설심 자료를 이용하여 GIS 자료를 구축함으로써 적설심의 공간적 분포를 추출하였다. 이를 국내 5대유역인 한강,낙동강,금강,영산강,섬진강 유역에 대하여 융설모형의 주요 매개변수인 적설분포면적,유역 평균, 최대 적설심과 적설분포감소비곡선을 구축하였다. 그 중 적설분포면적감소곡선 (SDC : Snow cover Depletion Curve)는 적설분포면적의 감소형태를 나타내 주는 지표로써 융설의 가장 민감한 매개변수이다. 이를 국내 5대 강 유역에 대해 구축하여 정량화 하였다.
Establishment of snowmelt factors is necessary to simulate stream flow using snowmelt models during snowmelt periods. The few observed data related snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. The objective of this study was to extract snowmelt factors using RS, GIS technique and meteorological data. Snow cover maps were derived from NOAA/AVHRR images for the winter seasons from 1997 to 2003. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation station. Depletion curves of snowmelt area were described from the linear regression equations of each year between the average temperature and snow cover area in Soyanggang-dam and chungju-dam watershed.
The few observed data related snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) building for 5 major watersheds in South Korea. Especially SDC is important parameter of snowmelt model.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.2B
/
pp.177-185
/
2008
Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.
Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.