• Title/Summary/Keyword: 적설심기준

Search Result 16, Processing Time 0.034 seconds

Simulation of synthetic snow depth time-series using stochastic weather generation model (추계 일기 생성 모형을 활용한 합성 적설심 시계열 모의)

  • Park, Jeongha;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.99-99
    • /
    • 2021
  • 본 연구에서는 기상 자료와 적설 특성 자료의 관계를 도출하고, 이와 추계 일기 생성 모형을 활용하여 합성 적설심 시계열을 모의하는 방법에 대하여 제안한다. 추계 일기 생성 모형에서는 적설량을 직접 모의하지 않기 때문에 강수량을 적설량으로 변환해야한다. 이를 위해 도입한 관계식은 다음과 같다. 첫째로 기상청 적설 예보의 적설 유무 판단 기준을 이용하였다. 이 기준에서는 상대습도와 지상기온에 따라 강수의 형태를 비, 눈, 진눈깨비로 구분한다. 둘째로 강수가 적설로 판단되었을 때 강수량을 신적설심으로 환산하는 수상당량비를 지상기온과 회귀 분석하였다. 선행 연구에 따라 3시간 1 mm 이상 5 mm 이하 강수와 3시간 5 mm 이상 강수 사상에 대하여 나누어 sigmoid형 곡선을 이용하여 회귀 분석하였다. 마지막으로 융설에 의한 적설심 감소량을 지상기온과 복사량의 함수로 표현하였으며, 각 변수의 계수는 입자 군집 최적화 방법을 통하여 보정하였다. 추계 일기 생성 모형으로는 AWE-GEN 모형을 활용하였으며, 시험 자료로 강릉(105) 종관기상관측소의 24년 기간(1982-2005) 자료를 활용하여 합성 적설심 시계열을 생성하였다. 합성 적설심 시계열 모의 과정은 다음과 같다. (1) 추계 일기 생성 모형으로 합성 일기 자료 생성, (2) 강수 발생 시 적설 유무 판단, (3) 적설로 판단 시 수상당량비를 계산하여 신적설심 추정, (4) 기존 적설심에 신적설심을 더하고, 적설심 감소량만큼 감소. 위와 같은 과정으로 200년 길이 합성 적설심 시계열을 모의한 결과 극한 사상을 과소 추정하는 경향이 나타나 추가적인 개선이 필요한 것으로 판단된다.

  • PDF

Suggestions of the Snow Depth for Snow Damage (대설피해 유발 기준 적설심 분석)

  • Chu, Hyungsuk;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.188-188
    • /
    • 2020
  • 우리나라의 대표적인 겨울철 재난인 대설 피해는 대부분 농경지의 비닐하우스에 발생하며, 대표적인 피해종류로는 설압피해, 착설피해 등의 직접피해와 간접피해로 분류라 수 있다. 이 중 가장 피해를 많이 유발하는 것으로 알려져 있는 설압피해는 눈이 쌓인 높이가 높아지며 그 압력으로 인해 비닐하우스가 무너지는 것이다. 눈이 쌒인 높이가 어느 정도 되어야 비닐하우스에 피해를 유발하는지는 지역의 습도나 비닐하우스 설계 기준 등의 지역적이나 환경적인 요인에 따라 달라질 수 있다. 그러므로 본 연구에서는 과거 비닐하우스에 발생한 전국의 피해를 수집하여 지역 특성을 고려하여 온실에 손상을 줄 수 있는 적설심을 분석하였다. 연구의 자료는 행정안전부에서 발행되는 재해연보, 기상청에서 제공되는 적설자료를 사용하였다. 강원도 지역은 대설 연구 자료가 다른 지역에 비해 많기에 최근 대설피해 빈도가 증가하고 있는 충청도, 전라도 지역에 대한 적설심을 분석하였다. 본 연구의 결과로 대비차원 폭설피해 재난관리가 가능한 적설심 기준 설립에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

Extraction of Heavy Snowfall Vulnerable Area for 3 Representative Facilities Using GIS and Remote Sensing Techniques (GIS/RS를 이용한 3개의 대표 시설물별 폭설 취약지역 추출기법 연구)

  • Ahn, So-Ra;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • This study is to analyze the heavy snowfall vulnerable area of snow load design criteria for greenhouse, cattle shed and building using ground measured snow depth data and Terra MODIS snow cover area(SCA). To analyze the heavy snowfall vulnerable area, Terra MODIS satellite images for 12 years(2001-2012) were used to obtain the characteristics of snow depth and snow cover areas respectively. By comparing the snow load design criteria for greenhouse(cm), cattle shed($kg/m^2$), and building structure($kN/m^2$) with the snow depth distribution results by Terra MODIS satellite images, the facilities located in Jeolla-do, Chungcheong-do, and Gangwon-do areas were more vulnerable to exceed the current design criteria.

Propofal of Snow Damage Induction Snow Depth Standard Using Logistic Regression Analysis (로지스틱 회귀분석을 활용한 대설피해 유발 적설심 기준 제안)

  • Chu, Hyungsuk;Park, Heeseong;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.492-492
    • /
    • 2021
  • 최근 세계적으로 기상이변에 의해 한파와 폭설이 발생하고 있으며, 이로 인한 피해를 예측하기 어려워 졌다. 우리나라의 대설피해는 지역별로 상이해 강설 특성을 파악하기 위해 강설자료와 과거의 기상현상자료를 분석하여야 한다. 대표적인 대설피해로 설압피해, 적설피해, 착설피해와 간접피해로 분류 되며 시설재배면적에 가장 많은 영향을 미치는 설압피해는 쌓인 눈의 압력으로 인하여 파손 및 붕괴를 유발한다. 본 연구에서는 과거 재해연보 자료(1994년~2018년)와 기상청에서 제공되는 적설자료를 활용해 대설피해 관련 자료를 수집 및 분석하여 온실에 손상을 입힐 수 있는 적설심을 분석하였다. 로지스틱 회귀분석을 위한 자료 구축은 재해연보의 피해기간을 기반으로 하여 종속변수로 사용하였다. 이후 적설심자료를 최심신적설로 변형하였으며 온도와 함께 독립변수로 사용하였다. 우리나라의 대설 사례가 많은 영동지역은 강설빈도가 높아 대설 방지대책 및 대설 연구자료가 다른 지역에 비해 많은 것으로 판단된다. 이에 따라 최근 빈도가 증가하고 있으며 대설피해 사례가 10건 이상이고 관측지점이 피해지역과 가까운 지역, 적설관측자료가 연속적으로 관측되어 있는 남원, 보령, 장수, 부안을 공간적 범위로 선정하였다. 연구의 결과로 대설 피해 재난관리가 가능한 적설심 기준 설립에 도움을 줄 것으로 판단된다.

  • PDF

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

Simulation of continuous snow accumulation data using stochastic method (추계론적 방법을 통한 연속 적설 자료 모의)

  • Park, Jeongha;Kim, Dongkyun;Lee, Jeonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.60-60
    • /
    • 2022
  • 본 연구에서는 적설 추정 알고리즘과 추계 일기 생성 모형을 활용하여 관측 적설의 특성을 재현하는 연속 적설심 자료 모의 방법을 소개한다. 적설 추정 알고리즘은 강수 유형 판단, Snow Ratio 추정, 그리고 적설 깊이 감소량 추정까지 총 3단계로 구성된다. 먼저 강수 발생시 지상기온과 상대습도를 지표로 활용하여 강수 유형을 판단하고, 강수가 적설로 판별되었을 때 강수량을 신적설심으로 환산하는 Snow Ratio를 추정한다. Snow Ratio는 지상 기온과의 sigmoid 함수 회귀분석을 통해 추정하였으며, precipitation rate 조건(5 mm/3hr 미만 및 이상)에 따라 두 가지 함수를 적용하였다. 마지막으로 적설 깊이 감소량은 온도 지표 snowmelt 식을 이용하여 추정하였으며, 매개변수는 적설 깊이 및 온도 관측 자료를 활용하여 보정하였다. 속초 관측소 자료를 활용하여 매개변수를 보정 및 검증하여 높은 NSE(보정기간 : 0.8671, 검증기간 : 0.7432)를 달성하였으며, 이 알고리즘을 추계 일기 생성 모형으로 모의한 합성 기상 자료(강수량, 지상기온, 습도)에 적용하여 합성 적설심 시계열을 모의하였다. 모의 자료는 관측 자료의 통계 및 극한값을 매우 정확하게 재현하였으며, 현행 건축구조기준과도 일치하는 것으로 나타났다. 이 모형을 통하여 적설 위험 분석 분야뿐 아니라 기후 전망 자료와의 결합, 미계측 지역에 대한 자료 모의 등에도 광범위하게 활용될 수 있을 것이다.

  • PDF

Estimation of Snow Damage and Proposal of Snow Damage Threshold based on Historical Disaster Data (재난통계를 활용한 대설피해 예측 및 대설 피해 적설심 기준 결정 방안)

  • Oh, YeoungRok;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.325-331
    • /
    • 2017
  • Due to the climate change, natural disaster has been occurred more frequently and the number of snow disasters has been also increased. Therefore, many researches have been conducted to predict the amount of snow damages and to reduce snow damages. In this study, snow damages over last 21 years on the Natural Disaster Report were analyzed. As a result, Chungcheong-do, Jeolla-do, and Gangwon-do have the highest number of snow disasters. The multiple linear regression models were developed using the snow damage data of these three provinces. Daily fresh snow depth, daily maximum, minimum, and average temperatures, and relative humidity were considered as possible inputs for climate factors. Inputs for socio-economic factors were regional area, greenhouse area, farming population, and farming population over 60. Different regression models were developed based on the daily maximum snow depth. As results, the model efficiency considering all damage (including low snow depth) data was very low, however, the model only using the high snow depth (more than 25 cm) has more than 70% of fitness. It is because that, when the snow depth is high, the snow damage is mostly caused by the snow load itself. It is suggested that the 25 cm of snow depth could be used as the snow damage threshold based on this analysis.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

Evaluation of Snow Damage Prediction Funtion Depending on Historical Snow Data. (적설 관측 여부에 따른 대설피해 예측함수 적용성 검토)

  • Lee, Hyeong Joo;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.403-403
    • /
    • 2018
  • 최근 세계적인 기상이변으로 국지적인 대설과 한파가 발생하고 있다. 특히 최근 2018년 1월 8일 미국에 100년만의 한파로 인해 체감온도가 영하 69도까지 떨어지고, 우리나라에서도 2월 8일 제주도 폭설과 한파로 인해 교통이 마비되는 등의 피해가 발생한 것으로 알려져 겨울철 자연재해에 대한 관심이 대두되고 있다. 이로 인해 대설피해 예측 및 저감에 대한 연구가 다수 진행되고 있으나, 적설 관측소는 전국 229개 시 군 구 중 약 100여개에 불과하여 미관측 지역에 대한 데이터 수집에 어려움을 겪고 있다. 따라서 본 연구에서는 적설 관측 지점별 대설피해 예측함수를 개발하고 적용성을 검토하고자 하였다. 이를 위해 본 연구에서는 4단계 구성과정을 통해 연구를 수행하였다. 첫째, 전국 대설피해 관측지점 및 미관측지점을 구분하고, 관측 이력 20년 이상 지역을 표본으로 채택하였다. 둘째, 재해통계 활용 및 문헌조사를 통해 대설피해 유발인자 조사 및 분석하였다. 셋째, 비닐하우스의 최소 설계기준 적설심의 절반인 10 cm 미만에서 발생한 피해는 기타 외적인 요인이 작용하였을 것으로 보고 제외하였다. 넷째, 다중회귀분석을 통해 대설피해 예측 함수를 개발하고 적용성 검토를 실시하였다. 검토 결과 수정된 결정계수가 약 0.8 이상 나타내었으며, 이는 대설피해의 정확하고 예측을 위해 적설심 관측이 매우 중요한 것을 나타내며, 적설관측의 공간적인 정확도가 향상된다면 대략적인 피해규모 예측이 가능한 것으로 판단되었다.

  • PDF

Frequency Analysis of Snow depth Using Bayesian mixture distribution (Bayesian 혼합분포를 활용한 최심신적설량 빈도분석)

  • Kim, Ho Jun;Urnachimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.136-136
    • /
    • 2020
  • 홍수와 가뭄은 우리나라에 대표적인 수재해로서 관련 연구도 활발히 진행되고 있다. 반면 겨울철에 발생하는 적설의 경우 발생빈도와 피해가 상대적으로 적었으며 관련 연구 또한 미비한 실정이다. 우리나라 일부 남부지방은 강우와 다르게 연중 눈이 내리지 않는 경우가 존재하며, 자료 중 '0'값을 가지게 된다. 이로 인해 최적분포형 선정 및 매개변수 추정에 어려움이 있으며, 특히 '0'값으로 인해 단일 확률분포를 이용한 빈도해석은 한계가 있다. 본 연구에서는 연중 눈이 내리지 않는 무적설량을 고려하기 위하여 두 가지 이상의 확률분포함수를 결합한 혼합분포함수를 개발하였다. Bayesian 기법을 이용하여 무강우의 기준이 되는 값(δ)을 매개변수로 고려하여 추정하였으며, 이에 따른 적설발생 평균확률(P을 Mixing Ratio로 고려하여 혼합분포함수를 제시하였다. 본 연구에서는 기상청 산하 관측소 중 20년 이상의 지점을 선정하여 최심신적설량을 활용하였으며, 빈도별 확률적설심을 산정하였다. 적합한 확률분포형 선정을 위해 먼저 Bayesian 기법으로 매개변수와 우도함수를 산정한 후 각 분포형의 BIC(bayesian information criterion)값을 비교하였다. 선정된 최적분포형에 대해 빈도분석을 실시하여 최심신적설량을 제시하였다. 추가적으로 무강우를 기존 기준인 '0'으로 고정하여 본 연구에서 제시한 결과 값과 비교하였다.

  • PDF