본 논문에서는 기계 학습 모델의 취약점과 대응책에 초점을 맞추어 적대적인 기계 학습 공격 및 방어 분야를 탐구한다. 신중하게 만들어진 입력 데이터를 도입하여 기계 학습 모델을 속이거나 조작하는 것을 목표로 하는 적대적 공격에 대한 심층 분석을 제공한다. 이 논문은 회피 및 독성 공격을 포함한 다양한 유형의 적대적 공격을 조사하고 기계 학습 시스템의 안정성과 보안에 대한 잠재적 영향을 조사한다. 또한 적대적 공격에 대한 기계 학습 모델의 견고성을 향상시키기 위해 다양한 방어 메커니즘과 전략을 제안하고 평가한다. 본 논문은 광범위한 실험과 분석을 통해 적대적 기계 학습에 대한 이해에 기여하고 효과적인 방어 기술에 대한 통찰력을 제공하는 것을 목표로 한다.
기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.
본 논문에서는 머신러닝 시스템에 심각한 오류를 발생시킬 수 있는 적대적 샘플을 제작하고, 이를 이용한 적대적 공격을 효과적으로 예방하고 방어할 수 있는 Adversarial Training 기반의 AI 백신을 개발하였으며, 본 논문이 제안하는 AI 백신이 적대적 샘플을 올바르게 인식하고 AI 공격 성공율을 현저하게 낮추는 등 강인성을 확보한 것을 실험을 통해 입증하였다. 아울러 스마트폰을 통해 수행결과를 확인할 수 있는 어플리케이션을 구현하여, 교육 및 시연 등을 통해 적대적 AI 공격에 대한 심각성을 인식하고 해당 방어과정을 명확히 이해할 수 있도록 하였다.
최근 인공지능 기술이 급격하게 발전하고 빠르게 보급되면서, 머신러닝 시스템을 대상으로 한 다양한 공격들이 등장하기 시작하였다. 인공지능은 많은 강점이 있지만 인위적인 조작에 취약할 수 있기 때문에, 그만큼 이전에는 존재하지 않았던 새로운 위험을 내포하고 있다고 볼 수 있다. 본 논문에서는 데이터 유형 별 적대적 공격 샘플을 직접 제작하고 이에 대한 효과적인 방어법을 구현하였다. 영상 및 텍스트 데이터를 기반으로 한 적대적 샘플공격을 방어하기 위해 적대적 훈련기법을 적용하였고, 그 결과 공격에 대한 면역능력이 형성된 것을 확인하였다.
MPEG(Moving Pictures Experts Group)에서는 딥러닝을 포함한 머신 비전과 관련하여 Video for machines 란 이름의 새로운 부호화 표준에 대한 논의를 진행하고 있다. VCM 에서는 기존의 비디오 부호화와 달리 머신을 기준으로 한 비디오 부호화를 목표로 한다. 본 논문에서는 적대적 공격 모델을 이용하여 VCM 부호화에 대해서 분석을 하고자 한다. 적대적 공격 모델 관점에서 비디오 부호화의 특성에 대해서 살펴보고, 이를 고려한 부호화 개발 방향에 대해 살펴본다.
딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.
탄성파 탐사를 수행할 때 경제적, 환경적 제약 또는 탐사 장비의 문제 등에 의해 탄성파 자료의 일부가 규칙적 또는 불규칙적으로 손실되는 경우가 발생하게 된다. 이러한 자료 손실은 탄성파 자료 처리와 해석 결과에 부정적인 영향을 주기 때문에 사라진 탄성파 자료를 복원할 필요가 있다. 탄성파 자료 복원을 위해 재탐사 또는 추가적인 탐사를 진행하는 경우 시간적, 경제적 비용이 발생하기 때문에, 많은 연구자들이 사라진 탄성파 자료를 정확히 복원하기 위한 보간 기법 연구를 진행해왔다. 최근에는 머신러닝 기술 발달에 따라 머신러닝 기법을 활용한 연구들이 진행되고 있고, 다양한 머신러닝 기술들 중에서도 서포트 벡터 회귀, 오토인코더, 유넷, 잔차넷, 생성적 적대 신경망 등의 알고리즘을 활용한 탄성파 자료의 보간 연구가 활발하게 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여 복잡한 신경망 모델뿐 아니라 상대적으로 구조가 간단한 서포트 벡터 회귀 모델을 통해서도 뛰어난 보간 결과를 얻을 수 있다는 것을 확인했다. 추후 머신러닝 기법들을 사용하는 탄성파 자료 보간 연구들에서 오픈소스로 공개된 실제 자료를 이용하며 데이터 증식, 전이학습, 기존 기법을 이용한 규제 등의 기술을 활용하면 탄성파 자료 보간 성능을 향상시킬 수 있을 것으로 기대된다.
Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.
우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.
최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.