• 제목/요약/키워드: 적대적 머신러닝

검색결과 21건 처리시간 0.03초

적대적 머신러닝 공격과 방어기법 (A Study Adversarial machine learning attacks and defenses)

  • 이제민;박재경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.621-623
    • /
    • 2023
  • 본 논문에서는 기계 학습 모델의 취약점과 대응책에 초점을 맞추어 적대적인 기계 학습 공격 및 방어 분야를 탐구한다. 신중하게 만들어진 입력 데이터를 도입하여 기계 학습 모델을 속이거나 조작하는 것을 목표로 하는 적대적 공격에 대한 심층 분석을 제공한다. 이 논문은 회피 및 독성 공격을 포함한 다양한 유형의 적대적 공격을 조사하고 기계 학습 시스템의 안정성과 보안에 대한 잠재적 영향을 조사한다. 또한 적대적 공격에 대한 기계 학습 모델의 견고성을 향상시키기 위해 다양한 방어 메커니즘과 전략을 제안하고 평가한다. 본 논문은 광범위한 실험과 분석을 통해 적대적 기계 학습에 대한 이해에 기여하고 효과적인 방어 기술에 대한 통찰력을 제공하는 것을 목표로 한다.

  • PDF

생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발 (Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network))

  • 최수연;손소영;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

적대적 공격의 방어를 위한 AI 백신 연구 (A Study on AI Vaccine for the Defense against Adversarial Attack)

  • 송채원;오승아;정다예;임유리;노은지;이규영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.1132-1135
    • /
    • 2021
  • 본 논문에서는 머신러닝 시스템에 심각한 오류를 발생시킬 수 있는 적대적 샘플을 제작하고, 이를 이용한 적대적 공격을 효과적으로 예방하고 방어할 수 있는 Adversarial Training 기반의 AI 백신을 개발하였으며, 본 논문이 제안하는 AI 백신이 적대적 샘플을 올바르게 인식하고 AI 공격 성공율을 현저하게 낮추는 등 강인성을 확보한 것을 실험을 통해 입증하였다. 아울러 스마트폰을 통해 수행결과를 확인할 수 있는 어플리케이션을 구현하여, 교육 및 시연 등을 통해 적대적 AI 공격에 대한 심각성을 인식하고 해당 방어과정을 명확히 이해할 수 있도록 하였다.

적대적 AI 공격 및 방어 기법 연구 (A Study on Adversarial AI Attack and Defense Techniques)

  • 문현정;오규태;유은성;임정윤;신진영;이규영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.1022-1024
    • /
    • 2022
  • 최근 인공지능 기술이 급격하게 발전하고 빠르게 보급되면서, 머신러닝 시스템을 대상으로 한 다양한 공격들이 등장하기 시작하였다. 인공지능은 많은 강점이 있지만 인위적인 조작에 취약할 수 있기 때문에, 그만큼 이전에는 존재하지 않았던 새로운 위험을 내포하고 있다고 볼 수 있다. 본 논문에서는 데이터 유형 별 적대적 공격 샘플을 직접 제작하고 이에 대한 효과적인 방어법을 구현하였다. 영상 및 텍스트 데이터를 기반으로 한 적대적 샘플공격을 방어하기 위해 적대적 훈련기법을 적용하였고, 그 결과 공격에 대한 면역능력이 형성된 것을 확인하였다.

적대적 공격을 이용한 VCM 비디오 부호화 분석 (Analysis on Video coding for machines using Adversarial Attack)

  • 추현곤;임한신;이진영;이희경;정원식;서정일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.4-6
    • /
    • 2021
  • MPEG(Moving Pictures Experts Group)에서는 딥러닝을 포함한 머신 비전과 관련하여 Video for machines 란 이름의 새로운 부호화 표준에 대한 논의를 진행하고 있다. VCM 에서는 기존의 비디오 부호화와 달리 머신을 기준으로 한 비디오 부호화를 목표로 한다. 본 논문에서는 적대적 공격 모델을 이용하여 VCM 부호화에 대해서 분석을 하고자 한다. 적대적 공격 모델 관점에서 비디오 부호화의 특성에 대해서 살펴보고, 이를 고려한 부호화 개발 방향에 대해 살펴본다.

  • PDF

딥뉴럴네트워크 상에 신속한 오인식 샘플 생성 공격 (Rapid Misclassification Sample Generation Attack on Deep Neural Network)

  • 권현;박상준;김용철
    • 융합보안논문지
    • /
    • 제20권2호
    • /
    • pp.111-121
    • /
    • 2020
  • 딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.

머신러닝을 사용한 탄성파 자료 보간법 기술 연구 동향 분석 (Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning)

  • 배우람;권예지;하완수
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.192-207
    • /
    • 2020
  • 탄성파 탐사를 수행할 때 경제적, 환경적 제약 또는 탐사 장비의 문제 등에 의해 탄성파 자료의 일부가 규칙적 또는 불규칙적으로 손실되는 경우가 발생하게 된다. 이러한 자료 손실은 탄성파 자료 처리와 해석 결과에 부정적인 영향을 주기 때문에 사라진 탄성파 자료를 복원할 필요가 있다. 탄성파 자료 복원을 위해 재탐사 또는 추가적인 탐사를 진행하는 경우 시간적, 경제적 비용이 발생하기 때문에, 많은 연구자들이 사라진 탄성파 자료를 정확히 복원하기 위한 보간 기법 연구를 진행해왔다. 최근에는 머신러닝 기술 발달에 따라 머신러닝 기법을 활용한 연구들이 진행되고 있고, 다양한 머신러닝 기술들 중에서도 서포트 벡터 회귀, 오토인코더, 유넷, 잔차넷, 생성적 적대 신경망 등의 알고리즘을 활용한 탄성파 자료의 보간 연구가 활발하게 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여 복잡한 신경망 모델뿐 아니라 상대적으로 구조가 간단한 서포트 벡터 회귀 모델을 통해서도 뛰어난 보간 결과를 얻을 수 있다는 것을 확인했다. 추후 머신러닝 기법들을 사용하는 탄성파 자료 보간 연구들에서 오픈소스로 공개된 실제 자료를 이용하며 데이터 증식, 전이학습, 기존 기법을 이용한 규제 등의 기술을 활용하면 탄성파 자료 보간 성능을 향상시킬 수 있을 것으로 기대된다.

객체탐지 모델에 대한 위장형 적대적 패치 공격 (Camouflaged Adversarial Patch Attack on Object Detector)

  • 김정훈;양훈민;오세윤
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구 (A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone)

  • 육심언;박휘랑;서태석;조영호
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.119-125
    • /
    • 2023
  • 우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.

다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용 (Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF