• 제목/요약/키워드: 저해상도 특징

검색결과 72건 처리시간 0.026초

연상메모리를 이용한 저해상도 및 저대비 문자 영상 인식 (Recognition of character images with low-resolution and low-contrast using an associative memory)

  • 정찬호;김대철;김경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서는 저해상도 및 저대비의 특성을 지니는 문자 영상으로부터 특징을 추출하고 연상메모리를 이용하여 대상 문자를 인식하는 방법을 소개한다. 저해상도 영상의 이진화 과정에서 발생할 수 있는 정보의 왜곡 현상을 피하기 위하여 입력 영상의 gradient 정보를 이용하여 특징을 추출한다 저해상도 일 저대비의 특성을 지니는 문자 영상의 경우 입력 영상에 noise가 존재하거나 충분한 정보가 포함되어 있지 않은 경우 특징벡터에 상당한 왜곡을 초래하게 된다. 손상된 특징을 복원하기 위하여 연상메모리를 이용한다. 인식하고자 하는 문자 영상들의 prototype 영상들을 이용하여 연상메모리의 weight matrix를 구성한다. weight matrix를 이용해서 입력 영상이 가지는 특징과 가장 비슷한 특징을 가지는 prototype 영상의 특징벡터를 생성함으로써 손상된 특징을 복원하게 된다. 제안된 시스템을 이용하여 실험한 결과 noise가 존재하거나 정보가 충분하지 않은 입력 영상에 대해서 비교적 놀은 인식률을 얻음을 볼 수 있었다.

  • PDF

로드뷰 영상에서 번호판 영역의 저해상도 특징을 이용한 원거리 자동차 번호판 영역 검출 (Long Distance Vehicle License Plate Region Detection Using Low Resolution Feature of License Plate Region in Road View Images)

  • 오명관;박종천
    • 디지털융복합연구
    • /
    • 제15권1호
    • /
    • pp.239-245
    • /
    • 2017
  • 본 논문은 포털 사이트에서 서비스 되고 있는 로드뷰 영상에서 개인정보 보호를 위해 자동차 번호판 영역을 검출하는 방법을 제안한다. 로드뷰 영상에서 번호판 영역은 거리에 따라 서로 다른 특징을 갖고 있으며, 특히 원거리의 번호판 영역은 저해상도 특징으로 인해 번호판 영역을 검출하는데 어려움이 있다. 따라서 본 연구에서는 근거리에 있는 번호판 영역은 에지 특징을 이용하고 원거리에 있는 번호판 영역은 MSER 특징을 이용하여 번호판 영역을 검출하는 기법을 제안하였다. 각각의 방법으로 검출된 영역을 번호판 후보 영역으로 선정하고, 자동차 번호판의 숫자는 구조적 특징을 갖기 때문에 이를 이용하여 최종적인 번호판 영역을 검출하였다. 실험결과, 다양한 로드뷰 영상에서 precision 75%, recall 93%, 그리고 F-Score 80%의 성능평가 결과를 얻었다.

초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출 (Hierarchical Feature Based Block Motion Estimation for Ultrasound Image)

  • 신성철;김백섭;배무호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.745-747
    • /
    • 2005
  • 본 논문은 연속 초음파 영상으로부터 모자이크 영상을 구하기 위한 특징점 기반 블록 움직임 추출 방법에서 정확도를 높이고 계산 시간을 줄이기 위해 다해상도(multi-resolution)영상을 이용한 계층적 특징점 기반 블록 움직임 추출 방법을 제시하였다. 초음파 영상에서의 Speckle 노이즈의 영향을 줄이기 위해 저해상도의 영상에서 특징점을 추출하고, 계산 시간을 줄이기 위해 저해상도 영상의 추정된 움직임을 고해상도 영상의 움직임 추정에 적용하여 탐색 범위를 줄였다. 그 결과 계산 시간을 개선하면서 모자이크 영상의 정확도를 높일 수 있었다.

  • PDF

VCM 의 바텀-업 MSFF 를 이용한 MSFC 기반 멀티-스케일 특징 압축 네트워크 개선 (Enhancement of MSFC-Based Multi-Scale Features Compression Network with Bottom-UP MSFF in VCM)

  • 김동하;한규웅;차준석;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.116-118
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machine)은 입력된 이미지/비디오의 특징(feature)를 압축하는 Track 1 과 입력 이미지/비디오를 직접 압축하는 Track 2 로 나뉘어 표준화가 진행 중이다. 본 논문은 Track 1 의 비전임무 네트워크로 사용하는 Detectron2 의 FPN(Feature Pyramid Network)에서 추출한 멀티-스케일 특징을 효율적으로 압축하는 MSFC 기반의 압축 모델의 개선 기법을 제시한다. 제안기법은 해상도를 줄여서 단일-스케일 압축맵을 압축하는 기존의 압축 모델에서 저해상도 특징맵을 고해상도 특징맵에 바텀-업(Bottom-Up) 구조로 합성하여 단일-스케일 특징맵을 구성하는 바텀-업 MSFF 를 가지는 압축 모델을 제시한다. 제안방법은 기존의 모델 보다 BPP-mAP 성능에서 1 ~ 2.7%의 개선된 BD-rate 성능을 보이며 VCM 의 이미지 앵커(image anchor) 대비 최대 -85.94%의 BD-rate 성능향상을 보인다.

  • PDF

포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식 (Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.64-69
    • /
    • 2008
  • 얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.

계층구조 합성곱 신경망 기반 고해상도 동영상 프레임 고속 보간 방법 (Hierarchical Convolutional Neural Network based Fast Frame Interpolat ion for High-Resolution Video)

  • 안하은;정진우;김제우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.71-72
    • /
    • 2019
  • 본 논문에서는 계층구조 합성곱 신경망 기반의 고해상도 동영상 프레임 고속 보간 방법을 제안한다. 기존의 고해상도 동영상 프레임 보간 방법은 시간 해상도와 공간 해상도를 분리하여 보간 하기 때문에, 예측된 보간 프레임이 블러(blur) 열화를 갖는 문제를 보인다. 제안하는 방법에서는 이러한 문제를 해결하기 위하여 계층구조 합성곱 신경망 기반의 보간 방법을 이용한다. 제안하는 계층구조 합성곱 신경망은 우선 저해상도의 광학 흐름 추정지도를 생성하고 이를 고해상도로 복원하여 프레임 보간을 수행한다. 이때, 저해상도 광학 흐름 지도를 추정할 때 사용된 특징 정보들을 활용하여 고품질의 고해상도 광학 흐름 지도를 추정한다. 실험을 통하여 제안하는 방법이 고해상도 프레임을 고속으로 보간하며, 동시에 블러 열화에 대한 성능 향상을 가짐을 보였다.

  • PDF

RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법 (Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network)

  • 응우엔휴중;김응태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.5-8
    • /
    • 2019
  • 단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 본 논문은 단일 영상 초해상도 성능을 개선하기 위해 웨이블릿 예측 네트워크를 효율적으로 적용하는 방법에 대해 연구하였으며, 저해상도 입력 영상의 특징을 잘 추출해내기 위해 네트워크 내부에 RDB를 적용하여 기존 방식보다 효율적으로 고해상도 영상 복원하는 기법을 제안한다. 모의실험을 통해 제안하는 방법이 기존 방법보다 화질은 약 PSNR 0.18dB만큼 우수하며 속도는 1.17배 빠른 것을 확인하였다.

  • PDF

보안시스템을 위한 실시간 저해상도 얼굴 인식 알고리즘 (Real-time Low-Resolution Face Recognition Algorithm for Surveillance Systems)

  • 권오설
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.105-108
    • /
    • 2020
  • 본 논문은 초고해상도 기법을 이용한 실시간 저해상도 얼굴 인식 시스템을 제안한다. 기존의 비대면 얼굴인식은 거리에 따라 해상도가 저하되면서 얼굴인식의 성능이 저하되는 한계가 있다. 이러한 문제를 해결하기 위해서 초고해상도 기법에 대한 연구도 진행되었으나 비대면 얼굴인식 전 과정에 대한 통합적인 설계에 관한 연구는 미흡하다. 제안한 비대면 얼굴인식은 저해상도 영상으로 키프레임 검출, 얼굴검출, 초고해상도 기법, 특징추출 및 얼굴인식 결과까지 약 2초 이내에 수행함으로써 먼 거리에서도 비대면 얼굴인식의 성능을 향상하였다. 다양한 형태의 영상에 대한 실험을 통해 제안한 방법은 기존 방법에 비해 실시간 및 성능측면에서 저해상도 얼굴 인식이 우수함을 확인하였다.

MultiTriangulation에서의 가변 LOD 추출 (Extraction variable Level-of-Detail on MultiTriangulation)

  • 양수정;마상백
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.586-588
    • /
    • 1999
  • 간소화된 메쉬의 다중해상 표현은 실시간으로 원하는 해상 메쉬의 랜더링이 가능하고 저해상 메쉬에서 고해상 메쉬로의 전환이 시각적인 연속성을 갖는다. 또 메쉬의 공간마다 다른 해상도의 표현이 가능하다. 본 논문에서는 기존의 다중해상모델의 특징과 단점을 알아보고 다중모델링 이슈을 제시한다. 효율적인 가변 LOD를 위한 기존의 다중해상 모델을 일반화시킨 MT(MultiTriangulation)를 제시한다. MT의 구조적 특징, MT에서의 선택적 상세화와 시점과의 거리에 따른 가변 LOD 질의를 알아본다.

  • PDF

실시간 얼굴 검출 시스템 설계 및 구현 (Design and Implementation of a Real-Time Face Detection System)

  • 정성태;이호근
    • 한국멀티미디어학회논문지
    • /
    • 제8권8호
    • /
    • pp.1057-1068
    • /
    • 2005
  • 본 논문에서는 웹카메라 영상과 같은 저해상도의 동영상으로부터 실시간으로 다중 얼굴을 검출할 수 있는 시스템을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 검출된 얼굴 후보 영역에 대한 주성분 분석을 수행함으로써 데이터의 크기가 현저히 줄어든 특징 벡터를 구한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다. 실험결과에 의하면, 본 논문에서 제안한 방법은 저해상도 동영상에서 실시간 처리가 가능한 다중 얼굴 검출 성능을 보였고, 주성분분석과 SVM을 이용한 얼굴 검증 과정을 통해 얼굴 검출의 정확도를 향상 시켰다.

  • PDF