• Title/Summary/Keyword: 저항선

Search Result 872, Processing Time 0.029 seconds

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

Numerical Prediction of Ship Induced Wave and its Propagation Using Nonlinear Dispersive Wave Model (비선형분산파랑모형을 이용한 항주파의 발생과 전파에 관한 수치예측모형 개발)

  • Shin, Seung-Ho;Jeong, Dae-Deug
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.527-537
    • /
    • 2003
  • The characteristics of ship induced waves caused by navigation become widely different from both ship's speed and water depth condition. The ship induced waves specially generated in coastwise routes frequently give rise to call unforeseen danger for swimmers and small boats as well as shoreline erosion or sea wall destruction in coastal zones. The main concern of ship induced wave study until now is either how to reduce ship resistance or how to manoeuvre the ship safely under a constant water depth in the view point of shipbuilding engineers. Moreover, due to the trends for appearance of the high speed ships at the shallow coastal water, we are confronted with the danger of damages from those ship induced waves. Therefore, it is necessary to examine the development of ship induced waves and the influence of their deformation effects according to its propagation ray. In present study, in order to predict the development of the ship induced waves and their propagation under the conditions of complicate and variable shallow water depth with varying ship's speed, we constructed a computer model using Boussinesq equation with a fixed coordinate system and verified the model results by comparison with experimental results. Additionally, the model was applied under the variable water depth based on actual passage and we then confirmed the importance of the variable water depth consideration.

EFFECTS OF MAXILLARY PROTRACTION ON THE DISPLACEMENT OF THE MAXILLA (상악골 전방 견인이 상악골체의 변위에 미치는 영향)

  • Ko, Jeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.543-555
    • /
    • 1995
  • In the orthopedic therapy, the biomechanical analysis of the appliance is necessary to get a desirable orthopedic effect. The purpose of this study was to investigate the desirable direction and application position of the protraction force. The protraction force of 500g was applied to the first premolar or to the first molar. The direction of force application was paralell or $20^{\circ}$ downward to the occlusal plane respectively. The stress distribution and the displacement within the maxilla was analyzed by a 3-dimensional finite element method. The findings obtained were as follows 1. Protraction forces caused a counterclockwise rotation of the maxilla. 2. The degree of maxillary rotation was less when the force was applied $20^{\circ}$ downward direction to the occlusal plane than when applied to the parallel direction. 3. The degree of rotation of maxilla was greater when the parallel force was applied to the 1st premolar than when applied to the first molar, whereas it was greater when force is applied $20^{\circ}$ downward than at the first premolar. In conclusion, the $20^{\circ}$ downward protraction from the first premolar induced the least counterclockwise rotation of the maxilla and was thought as the desirable direction and application position of the protraction force.

  • PDF

Image Processing Algorithms for DI-method Multi Touch Screen Controllers (DI 방식의 대형 멀티터치스크린을 위한 영상처리 알고리즘 설계)

  • Kang, Min-Gu;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.1-12
    • /
    • 2011
  • Large-sized multi-touch screen is usually made using infrared rays. That is because it has technical constraints or cost problems to make the screen with the other ways using such as existing resistive overlays, capacitive overlay, or acoustic wave. Using infrared rays to make multi-touch screen is easy, but is likely to have technical limits to be implemented. To make up for these technical problems, two other methods were suggested through Surface project, which is a next generation user-interface concept of Microsoft. One is Frustrated Total Internal Reflection (FTIR) which uses infrared cameras, the other is Diffuse Illumination (DI). FTIR and DI are easy to be implemented in large screens and are not influenced by the number of touch points. Although FTIR method has an advantage in detecting touch-points, it also has lots of disadvantages such as screen size limit, quality of the materials, the module for infrared LED arrays, and high consuming power. On the other hand, DI method has difficulty in detecting touch-points because of it's structural problems but makes it possible to solve the problem of FTIR. In this thesis, we study the algorithms for effectively correcting the distort phenomenon of optical lens, and image processing algorithms in order to solve the touch detecting problem of the original DI method. Moreover, we suggest calibration algorithms for improving the accuracy of multi-touch, and a new tracking technique for accurate movement and gesture of the touch device. To verify our approaches, we implemented a table-based multi touch screen.

Electrochemical Characterization of Hybrid Semiconductor-Based Dye-Sensitized Solar Cells (혼성반도체로 제조된 염료감응형 태양전지의 전기화학적 특성)

  • Lee, Sung-Kyu;Jeong, Eui-Gyung;Im, Ji-Sun;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.175-180
    • /
    • 2011
  • In this study, the $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors were prepared by mixing $TiO_{2}$ and $V_{2}O_{5}$, and a subsequent smash process to reduce the recombination of electron and improve the efficiency of solar cells. Dye-sensitized solar cells were constructed using the resultant hybrid semiconductor, and their electrochemical properties were also investigated. The photocurrent-voltage curve obtained with the cells indicated a significant increase in the efficiency from 2.9 to 5.7% by the factor of 2 compared to the result obtained only with $TiO_{2}$. It is believed that the introduction of $V_{2}O_{5}$ effectively transport electrons in the $TiO_{2}$ conduction band to FTO glass and suppress recombination with the dye and/or the electrolyte, thus yielding an efficient performance of the dye sensitized solar cell. The impedance values also indicated a decrease of resistance in the interface of $TiO_{2}$/dye/electrolyte supporting the constructive contributions of the smashed $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors for the efficiency.

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF

CASE REPORTS OF FASCIAL SPACE ABSCESS CAUSED BY ODONTOGENIC INFECTION (치성 감염에 의한 근막간극 농양의 치험례)

  • Choi, Ji-Eun;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.136-143
    • /
    • 2008
  • Infections involved with the oral and maxillofacial area are associated with various anatomical structures. If the proper treatment is not done in an immediate period, the infections will be quite fatal. The causes of the infections are numerous, but the most common cause of odontogenic infections in children is a dental caries. It is known to lead to some kinds of diseases such as periapical abscess, cellulitis, osteomyelitis, Ludwig's angina, toxic shock syndrome and so on. The common pathogenic sequence of fascial abscess is a necrotic pulpal inflammation in the form of dentoalvelor abscess which spreads over and gradually penetrates into the fascial membranes through the cortical bones and finally contracts the potential fascial spaces. If the infections of oral maxillofacial area were penetrated into the surrounding soft tissues, then they would diffuse into the directions of the least tissue resistance along with the connective tissues and the fascial spaces. These infections can be properly cured by tooth extraction, endodontic therapy, surgical treatment including Incision & drainage and antibiotics. The purpose of the cases is to report the satisfactory treatment results in the patients derived from the canine fascial space abscesss or buccal fascial space ones of the odontogenic origin.

  • PDF

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles (연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong-Hyun;Ahn, Byung-Ki;Um, Suk-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.585-592
    • /
    • 2011
  • The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer (후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가)

  • Jeong, Minsu;Lee, Hyeonchul;Bae, Byung-Hyun;Son, Kirak;Kim, Gahui;Lee, Seung-Joon;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.