• Title/Summary/Keyword: 저항모멘트

Search Result 263, Processing Time 0.025 seconds

Moment Resistance Performance of Each Joint for Post-Beam Frame Structure (기둥-보 뼈대구조를 위한 각부 접합부의 모멘트저항성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Japanese larch glulam was used as structural members to develop a modern engineered wood jointing system using traditional post and beam structure. For the connections comprised of traditional joining and drift-pins, structural members are processed at a pre-cut factory. As a basic study to examine and increase the whole shear performance of portal frame, pin withdrawal test and moment resistance tests were conducted on each connection. The post and beam members with specified connectors showed good bearing performance in the wood members' joining system, column-base and beam-end. Moment rigidity was a bit better in a joint with higher slenderness ratio of drift-pin, but moment resistance performances, yield moment and maximum moment, were excellent in smaller one.

Anisotropic Magnetoresistance Analysis of Permalloy Film Using 2-dimensional Magnetization Vector Measurement (2차원 자화벡터를 이용한 퍼멀로이 박막의 이방성자기저항 해석)

  • Lee, Young-Woo;Hu, Yong-Kang;Lim, Jae-Joon;Kim, Cheol-Gi;Kim, Chong-Oh;Yoon, Tae-Sick
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.115-119
    • /
    • 2004
  • We measured in-plane 2 dimensional magnetization vector using two pick-up coil sets and investigate the relationship between magnetization vector and anisotropic magnetoresistance. We can determine magnetization vector by measuring magnetic moment in x and y direction simultaneously. As the uniaxial magnetic anisotropy of permalloy film increases, magnetoresistance approaches the expectation which is calculated from the angle between current vector and magnetization vector. Magnetoresistance ratio is linearly proportional to the y moment magnitude which is parallel to the current direction.

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Seismic Performance Evaluation and Economic Analysis of 5-Story RC Moment-Resisting Frames (5층 철근콘크리트 모멘트-저항골조 구조물의 내진성능 평가 및 공사원가 분석)

  • Kang, Suk-Bong;Kim, Sungdae;Park, Eu-Su;Oh, Sangmuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.569-577
    • /
    • 2015
  • Recently, the concept of seismic design has changed from prescriptive to performance based design. For the performance based design with the specified target performance of the structure, it is necessary to execute the inelastic structural analysis to predict precisely the actual behavior of the structure. To address this issue, the seismic performance of the 5-story RC moment-resisting frames designed in accordance with KBC2009 is evaluated through push-over analysis and economic analysis is conducted focused on the direct construction costs. The results show that the ordinary and the intermediate moment-resisting frame are evaluated to meet the required performance design criteria and that the direct construction costs of the two frames are similar. However, although the special moment-resisting frame designed with strong column-weak girder philosophy satisfies the required performance design criteria, the direct construction cost is uneconomical compared with other frames. Therefore, although the intermediate moment-resisting frame of design category D is prohibited in IBC2012, the ordinary and the intermediate moment-resisting frame are estimated to be more reasonable than the special moment-resisting frame for the design of 5-story RC moment-resisting frame.

Numerical Analyses on Moment Resisting Behaviors of Electric Pole Foundations According to Their Shapes (기초형상에 따른 전철주기초 모멘트 저항거동에 관한 수치해석 연구)

  • Lee, Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.85-97
    • /
    • 2013
  • Electric pole foundations for overhead catenary system of railroad should be designed so that they may resist significant overturning moment but relatively small vertical forces. Also they should have proper shapes to be installed at restricted narrow areas adjacent to railroad track. In this paper the moment responses of rectangular pole foundations according to their shapes were investigated numerically. A three-dimensional finite element method was developed and verified so that the numerical behaviors of the foundation resisting the overturning moments were compared reasonably well with those from an existing real-scale load test. The influences of aspect ratio, varying section with depth and loading directions for rectangular section were investigated using the developed numerical method. From the numerical results, the optimized shapes of pole foundation for more effective and economic installation adjacent to railroad track are proposed.

Seismic Energy Response of Steel Moment Resisting Frames with Mass Irregularity (질량비정형을 갖는 강 모멘트 저항 골조의 지진에너지 반응)

  • Choi, Byong-Jeong;Song, In-Hawn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.213-220
    • /
    • 2003
  • 고층의 강 모멘트저항골조에 대한 지진 반응을 살펴보기 위해서 동적해석을 실시하였다. 구조물은 세가지의 다른 설계절차로 의도적으로 설계하였고 그 세가지의 개념은 강도 지배설계, 강기둥-약보 지배설계, 횡변위 지배설계이다. 그렇게 설계한 구조물이 각각 질량비정형이 존재하도록 하여 힁변위, 소성힌지, 이력에너지 입력 및 요구응력에 대해서 토론하였다. 미래에 설계에의 응용을 위해서 최대 지반가속도로 표현한 두 등급의 지진 하중을 이용해서 이력에너지 입력요구 곡선을 제시하였다.

  • PDF

Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method (할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.221-224
    • /
    • 2008
  • A secant stiffness linear analysis method was developed for moment redistribution of moment-resisting frames. In the proposed method, rotational spring models are used for plastic hinges of the members whose flexural moments are needed to be redistributed. At the plastic hinges, secant stiffness is used to address the effect of the flexural stiffness reduced by inelastic deformation. Linear analysis is repeated with adjusted secant stiffness until the flexural equilibrium is satisfied in the structure and members. By using the secant stiffness analysis, the effect of the inelastic deformation on the moment redistribution can be considered. Further, the safety of plastic hinges can be evaluated by comparing the inelastic rotation resulting from the secant stiffness analysis with the rotational capacity of the plastic hinges. For verification, the proposed method was applied to a continuous beam tested in previous study. A application example for a multiple story moment-resisting frame was presented.

  • PDF

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Measures to Ensure Overturning Stability of Tripod Mobile Ladders Used in Landscape Construction and Management - On Tripod Mobile Ladders Used in Korea Subject to EN131-Part 7 - (조경시공·관리에 사용되는 삼각지지 이동식 사다리의 전도 안정성 확보 대책 - EN131-Part 7 규정을 적용한 국내 삼각지지 이동식 사다리를 대상으로 -)

  • Lee, Kang-Hyeon;Lee, Gi-Yeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.76-88
    • /
    • 2024
  • A significant cause of fall or overturning accidents in the construction industry, including landscaping construction and management, is work at heights using portable ladders. Portable ladders are classified as A-type or triangular support ladders depending on the number of supporting leg and support conditions. The tripod mobile ladder, which supports itself with only three supporting legs, is unstable and more prone to overturning compared to the A type ladders. Therefore, using the specifications of the tripod mobile ladder and the stability regulations of EN131-Part 7, overturning and resistance moment calculation formulas were derived for all directions in which overturning could occur. The moments calculated using these equations, and the overturning stability in each direction were evaluated. According to the calculation results, although there are differences depending on the direction, most are unstable for overturning at 8 or more steps. Based on these results, this study proposed measures to increase the moment of resistance by changing the weight, depth, and width, and using outriggers to ensure stability against the overturning of ladder. However, when changing the specifications of these measures, the size increases are excessive and the applicability is insufficient. On the other hand, outriggers are an applicable measure as they can ensure stability against overturning with only a minimum expansion length.