• Title/Summary/Keyword: 저정밀 데이터 포맷

Search Result 1, Processing Time 0.014 seconds

Trends of Low-Precision Processing for AI Processor (NPU 반도체를 위한 저정밀도 데이터 타입 개발 동향)

  • Kim, H.J.;Han, J.H.;Kwon, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • With increasing size of transformer-based neural networks, a light-weight algorithm and efficient AI accelerator has been developed to train these huge networks in practical design time. In this article, we present a survey of state-of-the-art research on the low-precision computational algorithms especially for floating-point formats and their hardware accelerator. We describe the trends by focusing on the work of two leading research groups-IBM and Seoul National University-which have deep knowledge in both AI algorithm and hardware architecture. For the low-precision algorithm, we summarize two efficient floating-point formats (hybrid FP8 and radix-4 FP4) with accuracy-preserving algorithms for training on the main research stream. Moreover, we describe the AI processor architecture supporting the low-bit mixed precision computing unit including the integer engine.