• Title/Summary/Keyword: 저자키워드

Search Result 145, Processing Time 0.021 seconds

A Study of Themes and Trends in Research of Global Maritime Economics through Keyword Network Analysis (키워드 네트워크 분석을 통한 세계 해운경제의 연구 주제와 동향에 대한 연구)

  • Jhang, Se-Eun;Lee, Su-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • This study identifies themes and trends in maritime economics and logistics by examining 303 papers published in international journals from 2000 to 2014 using keyword network analysis. Network analysis can be used because the collected data follow Zipf's law and the power law. Utilizing the degree centrality and betweenness centrality, we find the important keywords in each five year period and determine the importance of shared keywords. To further explain keyword centralities, we invented a Delta-C algorithm to show the trends of keywords over time. We found that degree centrality is useful for identifying important research themes in each period because it is mainly concerned with the number of connections. On the other hands, betweenness centrality is useful to determine the unique themes that emerge in each of the specific periods.

A Study on the Identification Algorithm for Organization's Name of Author of Korean Science & Technology Contents (국내 과학기술콘텐츠 저자의 소속기관명 식별을 위한 소속기관명 자동 식별 알고리즘에 관한 연구)

  • Kim, Jinyoung;Lee, Seok-Hyong;Suh, Dongjun;Kim, Kwang-Young;Yoon, Jungsun
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.373-382
    • /
    • 2017
  • As the number of scientific and technical contents increases, services that support efficient search of scientific and technical contents are required. When an author's affiliation is used as a keyword, not only the contents produced by the affiliation can be searched, but also the identification rate of the search result using the author and the term as keyword can be improved. Because of the ambiguity and vagueness of the data used as a search keyword, the search result may include false negative or false positive. However, the previous research on the control through identification of the search keyword is mainly focused on the author data and terminology data. In this paper, we propose the algorithm to identify affiliations and experiment with show the experiment with scientific and technological contents held by the Korea Institute of Science and Technology Information.

Analysis of Research Trends about COVID-19: Focusing on Medicine Journals of MEDLINE in Korea (COVID-19 관련 연구 동향에 대한 분석 - MEDLINE 등재 국내 의학 학술지를 중심으로 -)

  • Mijin Seo;Jisu Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.3
    • /
    • pp.135-161
    • /
    • 2023
  • This study analyzed the research trends of COVID-19 research papers published in medical journals of Korea. Data were collected from 25 MEDLINE journals in 'Medicine and Pharmacy' studies and a total of 800 were selected. As a result of the study, authors from domestic affiliations made up 76.96% of the total, and the proportion of authors from foreign institutions decreased without significant change. The authors' majors were 'Internal Medicine' (32.85%), 'Preventive Medicine/Occupational and Environmental Medicine' (16.23%), 'Radiology' (5.74%), and 'Pediatrics' (5.50%), and 435 (54.38%) papers were collaborative research. As for author keywords, 'COVID19' (674), 'SARSCoV2' (245), 'Coronavirus' (81), and 'Vaccine' (80) were derived as top keywords. There were six words that appeared throughout the entire period: 'COVID19,' 'SARSCoV2,' 'Coronavirus,' 'Korea,' 'Pandemic,' and 'Mortality.' Co-occurrence network analysis was conducted on MeSH terms and author keywords, and common keywords such as 'covid-19,' 'sars-cov-2,' and 'public health' were derived. In topic modeling, five topics were identified, including 'Vaccination,' 'COVID-19 outbreak status,' 'Omicron variant,' 'Mental health, control measures,' and 'Transmission and control in Korea.' Through this study, it was possible to identify the research areas and major keywords by year of COVID-19 research papers published during the 'Public Health Emergency of International Concern (PHEIC).'

Knowledge Creation Structure of Big Data Research Domain (빅데이터 연구영역의 지식창출 구조)

  • Namn, Su-Hyeon
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.129-136
    • /
    • 2015
  • We investigate the underlying structure of big data research domain, which is diversified and complicated using bottom-up approach. For that purpose, we derive a set of articles by searching "big data" through the Korea Citation Index System provided by National Research Foundation of Korea. With some preprocessing on the author-provided keywords, we analyze bibliometric data such as author-provided keywords, publication year, author, and journal characteristics. From the analysis, we both identify major sub-domains of big data research area and discover the hidden issues which made big data complex. Major keywords identified include SOCIAL NETWORK ANALYSIS, HADOOP, MAPREDUCE, PERSONAL INFORMATION POLICY/PROTECTION/PRIVATE INFORMATION, CLOUD COMPUTING, VISUALIZATION, and DATA MINING. We finally suggest missing research themes to make big data a sustainable management innovation and convergence medium.

Time Series Analysis of Intellectual Structure and Research Trend Changes in the Field of Library and Information Science: 2003 to 2017 (문헌정보학 분야의 지적구조 및 연구 동향 변화에 대한 시계열 분석: 2003년부터 2017년까지)

  • Choi, Hyung Wook;Choi, Ye-Jin;Nam, So-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.89-114
    • /
    • 2018
  • Research on changes in research trends in academic disciplines is a method that enables observation of not only the detailed research subject and structure of the field but also the state of change in the flow of time. Therefore, in this study, in order to observe the changes of research trend in library and information science field in Korea, co-word analysis was conducted with Korean author keywords from three types of journals which were listed in the Korea Citation Index(KCI) and have top citation impact factor were selected. For the time series analysis, the 15-year research period was accumulated in 5-years units, and divided into 2003~2007, 2003~2012, and 2003~2017. The keywords which limited to the frequency of appearance 10 or more, respectively, were analyzed and visualized. As a result of the analysis, during the period from 2003 to 2007, the intellectual structure composed with 25 keywords and 8 areas was confirmed, and during the period from 2003 to 2012, the structure composed by 3 areas 17 sub-areas with 76 keywords was confirmed. Also, the intellectual structure during the period from 2003 to 2017 was crowded into 6 areas 32 consisting of a total of 132 keywords. As a result of comprehensive period analysis, in the field of library and information science in Korea, over the past 15 years, new keywords have been added for each period, and detailed topics have also been subdivided and gradually segmented and expanded.

A Study on the Intellectual Structure of Metadata Research by Using Co-word Analysis (동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구)

  • Choi, Ye-Jin;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.63-83
    • /
    • 2016
  • As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word 'metadata'. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

An Investigation on Digital Humanities Research Trend by Analyzing the Papers of Digital Humanities Conferences (디지털 인문학 연구 동향 분석 - Digital Humanities 학술대회 논문을 중심으로 -)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.393-413
    • /
    • 2021
  • Digital humanities, which creates new and innovative knowledge through the combination of digital information technology and humanities research problems, can be seen as a representative multidisciplinary field of study. To investigate the intellectual structure of the digital humanities field, a network analysis of authors and keywords co-word was performed on a total of 441 papers in the last two years (2019, 2020) at the Digital Humanities Conference. As the results of the author and keyword analysis show, we can find out the active activities of Europe, North America, and Japanese and Chinese authors in East Asia. Through the co-author network, 11 dis-connected sub-networks are identified, which can be seen as a result of closed co-authoring activities. Through keyword analysis, 16 sub-subject areas are identified, which are machine learning, pedagogy, metadata, topic modeling, stylometry, cultural heritage, network, digital archive, natural language processing, digital library, twitter, drama, big data, neural network, virtual reality, and ethics. This results imply that a diver variety of digital information technologies are playing a major role in the digital humanities. In addition, keywords with high frequency can be classified into humanities-based keywords, digital information technology-based keywords, and convergence keywords. The dynamics of the growth and development of digital humanities can represented in these combinations of keywords.

A Bibliometric Study on Foreign Reformed Theological Journals (외국 개혁신학 학술지에 대한 계량서지학적 연구)

  • Yoo, Yeong Jun;Lee, Jae Yun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.3
    • /
    • pp.149-170
    • /
    • 2019
  • This study aimed at analyzing the 6 foreign reformed theological journals and index terms, authors to find out the intellectual structures and the characteristics of the journals, the authors. First, analyzing the index terms, we analyzed the main keywords and the increasing trend by period, second, analyzing the journals, we analyzed the main subject of them and the subjects of distinguishing features by the journals, third we analyzed the authors' profiling. The index terms were clustered four big clusters and 23 small clusters. The journals were clustered the two clusters, and we also analyzed the index terms to distinguish a journal from other journals. The authors were clustered the six clusters, the index terms the clusters of the authors shared were similar to the results of the two analyses. The biblical teachings of The Old Testament and the New Testament and reformed theology were core subject terms and it was consistent in the results of these three analyses. This study mainly aimed at analyzing the 6 foreign reformed theological journals, and we found out that the parts of the results of this study were similar to the results of analyzing the domestic reformed theological journals. Therefore, there should be more researches needed to figure out what the results of this study mean to Korean reformed theology.

Research on Overseas Trends and Emerging Topics in Field of Library and Information Science (문헌정보학분야 해외 연구 동향 및 유망 주제 분석 연구)

  • Bon Jin Koo;Durk Hyun Chang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.71-96
    • /
    • 2023
  • This study aimed to investigate key research areas in the field of Library and Information Science (LIS) by analyzing trends and identifying emerging topics. To facilitate the research, a collection of 40,897 author keywords from 11,252 papers published in the past 30 years (1993-2022) in five journals was gathered. In addition, keyword analysis, as well as Principal Component Analysis (PCA) and correlation analysis were conducted, utilizing variables such as the number of articles, number of authors, ratio of co-authored papers, and cited counts. The findings of the study suggest that two topics are likely to develop as promising research areas in LIS in the future: machine learning/algorithm and research impact. Furthermore, it is anticipated that future research will focus on topics such as social media and big data, natural language processing, research trends, and research assessment, as they are expected to emerge as prominent areas of study.

The Expert Search System using keyword association based on Multi-Ontology (멀티 온톨로지 기반의 키워드 연관성을 이용한 전문가 검색 시스템)

  • Jung, Kye-Dong;Hwang, Chi-Gon;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.183-190
    • /
    • 2012
  • This study constructs an expert search system which has a mutual cooperation function based on thesis and author profile. The proposed methodology is as follows. First, we propose weighting method which can search a keyword and the most relevant keyword. Second, we propose a method which can search the experts efficiently with this weighting method. On the preferential basis, keywords and author profiles are extracted from the papers, and experts can be searched through this method. This system will be available to many fields of social network. However, this information is distributed to many systems. We propose a method using multi-ontology to integrate distributed data. The multi-ontology is composed of meta ontology, instance ontology, location ontology and association ontology. The association ontology is constructed through analysis of keyword association dynamically. An expert network is constructed using this multi-ontology, and this expert network can search expert through association trace of keyword. The expert network can check the detail area of expertise through the research list which is provided by the system.